Abstract
Green buildings (GBs) employ a wide range of passive and active energy-saving strategies to improve buildings’ energy performance. The suitability and performance of some of these strategies depend on outdoor climate conditions and may change over time due to global warming. Therefore, a GB may not retain its performance in the future. To address this issue and explore how much GB performance may be affected by climate change, this research aims to (1) evaluate the energy performance and thermal comfort of a GB and non-GB under present climate conditions; (2) predict the impact of climate change on these buildings, and (3) evaluate the climate resilience of a GB as opposed to a non-GB. To this end, a university GB and non-GB are simulated using DesignBuilder and calibrated with measured data. Future weather files based on Representative Concentration Pathways (RCPs) are used to predict climate conditions in the 2050s and 2090s. A comparison between the GB and non-GB revealed that the GB would save 15.1% and up to 21.9% of site energy under present and future climate conditions, respectively. It was also found that the thermal comfort level in the GB will remain significantly higher than in the non-GB in the future. The overheating issue in non-GBs will deteriorate in the future, with an increase of nearly 70% by the 2090s. The GB produces approximately 15% and up to 22% fewer GHG emissions than the non-GB under present and future climate conditions (RCP 8.5), respectively.
Original language | English |
---|---|
Article number | 977 |
Number of pages | 17 |
Journal | Buildings |
Volume | 13 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2023 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Open Access - Access Right Statement
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Notes
WIP in RDKeywords
- energy performance
- energy savings
- green buildings
- thermal comfort
- climate change