A new constitutive model to describe evolving elastoplastic behaviours of hexagonal close-packed sheet metals

Hamed Mehrabi, Chunhui Yang

Research output: Contribution to journalArticlepeer-review

Abstract

This study develops a new phenomenological constitutive model to capture the unique evolving cyclic elastoplastic behaviours of hexagonal close-packed (HCP) sheet metals. This new constitutive model is developed by adopting the concepts of multiple-yield surface approaches. Four phenomenological deformation modes, including Monotonic Compression (MC), Monotonic Tension (MT), Reverse Compression (RC), and Reverse Tension (RT), are considered to represent the hardening evolution of the materials, including the twining/untwining behaviours. Reference flow stress equations are introduced, and a Cazacu-Barlat 2004 (CB2004) type yield surface is employed to each deformation mode. In addition, the RT hardening parameters are defined as functions of plastic pre-strains to mitigate the interpolation error caused by parameter determination processes of existing models. For validation, the calculated stress–strain curves of AZ31B magnesium alloy are compared with experimental curves available from literature. Moreover, to show the accuracy of the proposed analytical model, the reproduced stress–strain curves are compared with those of an existing model—the modified homogeneous anisotropic hardening (HAH) model. The obtained results show that the new constitutive model can successfully reproduce experimental Tension–Compression-Tension (TCT) and Compression-Tension–Compression (CTC) stress–strain curves of HCP sheet metals with considerably less percentage errors.
Original languageEnglish
Pages (from-to)1625-1639
Number of pages15
JournalInternational Journal of Advanced Manufacturing Technology
Volume123
Issue number45448
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'A new constitutive model to describe evolving elastoplastic behaviours of hexagonal close-packed sheet metals'. Together they form a unique fingerprint.

Cite this