A new perspective on the expressive equivalence between graph convolution and attention models

Dai Shi, Zhiqi Shao, Andi Han, Yi Guo, Junbin Gao

Research output: Contribution to journalArticlepeer-review

Abstract

Graph neural networks (GNNs) have demonstrated impressive achievements in diverse graph tasks, and research on their expressive power has experienced significant growth in recent years. The well-known Weisfeiler and Lehman (WL) isomorphism test has been widely used to assess GNNs' ability to distinguish graph structures. However, despite being considered less expressive than other GNNs in graph-level tasks based on the WL test, two prominent GNN models, namely graph convolution networks (GCN) and attention-based graph networks (GAT), still exhibit strong performance in node-level classification tasks. In this paper, we present a comprehensive analysis of their expressive power using a novel evaluation metric: the number of linear regions. We demonstrate that by enhancing GCN with refined graph Ricci curvature, our proposed high-rank graph convolution network (HRGCN) can match or even surpass the prediction advantage of attention models. Thus, the two models exhibit equivalent node-level expressive powers. This fresh perspective highlights the evaluation of GNNs' expressive power in node-level classifications rather than solely at the graph level. Experimental results showcase that the proposed HRGCN model outperforms the state-of-the-art in various classification and prediction tasks.
Original languageEnglish
Pages (from-to)1199-1214
Number of pages16
JournalProceedings of Machine Learning Research
Volume222
Publication statusPublished - 2023
Event15th Asian Conference on Machine Learning, ACML 2023 - Istanbul, Turkey
Duration: 11 Nov 202314 Nov 2023

Keywords

  • Expressive Equivalence
  • Graph Neural Networks
  • Number of Linear Regions

Fingerprint

Dive into the research topics of 'A new perspective on the expressive equivalence between graph convolution and attention models'. Together they form a unique fingerprint.

Cite this