TY - JOUR
T1 - A novel deep learning-based method for damage identification of smart building structures
AU - Yu, Yang
AU - Wang, Chaoyue
AU - Gu, Xiaoyu
AU - Li, Jianchun
PY - 2019
Y1 - 2019
N2 - In the past few years, intelligent structural damage identification algorithms based on machine learning techniques have been developed and obtained considerable attentions worldwide, due to the advantages of reliable analysis and high efficiency. However, the performances of existing machine learning–based damage identification methods are heavily dependent on the selected signatures from raw signals. This will cause the fact that the damage identification method, which is the optimal solution for a specific application, may fail to provide the similar performance on other cases. Besides, the feature extraction is a time-consuming task, which may affect the real-time performance in practical applications. To address these problems, this article proposes a novel method based on deep convolutional neural networks to identify and localise damages of building structures equipped with smart control devices. The proposed deep convolutional neural network is capable of automatically extracting high-level features from raw signals or low-level features and optimally selecting the combination of extracted features via a multi-layer fusion to satisfy any damage identification objective. To evaluate the performance of the proposed deep convolutional neural network method, a five-level benchmark building equipped with adaptive smart isolators subjected to the seismic loading is investigated. The result shows that the proposed method has outstanding generalisation capacity and higher identification accuracy than other commonly used machine learning methods. Accordingly, it is deemed as an ideal and effective method for damage identification of smart structures.
AB - In the past few years, intelligent structural damage identification algorithms based on machine learning techniques have been developed and obtained considerable attentions worldwide, due to the advantages of reliable analysis and high efficiency. However, the performances of existing machine learning–based damage identification methods are heavily dependent on the selected signatures from raw signals. This will cause the fact that the damage identification method, which is the optimal solution for a specific application, may fail to provide the similar performance on other cases. Besides, the feature extraction is a time-consuming task, which may affect the real-time performance in practical applications. To address these problems, this article proposes a novel method based on deep convolutional neural networks to identify and localise damages of building structures equipped with smart control devices. The proposed deep convolutional neural network is capable of automatically extracting high-level features from raw signals or low-level features and optimally selecting the combination of extracted features via a multi-layer fusion to satisfy any damage identification objective. To evaluate the performance of the proposed deep convolutional neural network method, a five-level benchmark building equipped with adaptive smart isolators subjected to the seismic loading is investigated. The result shows that the proposed method has outstanding generalisation capacity and higher identification accuracy than other commonly used machine learning methods. Accordingly, it is deemed as an ideal and effective method for damage identification of smart structures.
UR - https://hdl.handle.net/1959.7/uws:65062
U2 - 10.1177/1475921718804132
DO - 10.1177/1475921718804132
M3 - Article
SN - 1475-9217
VL - 18
SP - 143
EP - 163
JO - Structural Health Monitoring
JF - Structural Health Monitoring
IS - 1
ER -