TY - JOUR
T1 - A novel early pregnancy risk prediction model for gestational diabetes mellitus
AU - Sweeting, Arianne N.
AU - Wong, Jencia
AU - Appelblom, Heidi
AU - Ross, Glynis P.
AU - Kouru, Heikki
AU - Williams, Paul F.
AU - Sairanen, Mikko
AU - Hyett, Jon A.
PY - 2019
Y1 - 2019
N2 - Introduction: Accurate early risk prediction for gestational diabetes mellitus (GDM) would target intervention and prevention in women at the highest risk. We evaluated novel biomarker predictors to develop a first-trimester risk prediction model in a large multiethnic cohort. Methods: Maternal clinical, aneuploidy and pre-eclampsia screening markers (PAPP-A, free hCGβ, mean arterial pressure, uterine artery pulsatility index) were measured prospectively at 11–13+6 weeks’ gestation in 980 women (248 with GDM; 732 controls). Nonfasting glucose, lipids, adiponectin, leptin, lipocalin-2, and plasminogen activator inhibitor-2 were measured on banked serum. The relationship between marker multiples-of-the-median and GDM was examined with multivariate regression. Model predictive performance for early (< 24 weeks’ gestation) and overall GDM diagnosis was evaluated by receiver operating characteristic curves. Results: Glucose, triglycerides, leptin, and lipocalin-2 were higher, while adiponectin was lower, in GDM (p < 0.05). Lipocalin-2 performed best in Caucasians, and triglycerides in South Asians with GDM. Family history of diabetes, previous GDM, South/East Asian ethnicity, parity, BMI, PAPP-A, triglycerides, and lipocalin-2 were significant independent GDM predictors (all p < 0.01), achieving an area under the curve of 0.91 (95% confidence interval [CI] 0.89–0.94) overall, and 0.93 (95% CI 0.89–0.96) for early GDM, in a combined multivariate prediction model. Conclusions: A first-trimester risk prediction model, which incorporates novel maternal lipid markers, accurately identifies women at high risk of GDM, including early GDM.
AB - Introduction: Accurate early risk prediction for gestational diabetes mellitus (GDM) would target intervention and prevention in women at the highest risk. We evaluated novel biomarker predictors to develop a first-trimester risk prediction model in a large multiethnic cohort. Methods: Maternal clinical, aneuploidy and pre-eclampsia screening markers (PAPP-A, free hCGβ, mean arterial pressure, uterine artery pulsatility index) were measured prospectively at 11–13+6 weeks’ gestation in 980 women (248 with GDM; 732 controls). Nonfasting glucose, lipids, adiponectin, leptin, lipocalin-2, and plasminogen activator inhibitor-2 were measured on banked serum. The relationship between marker multiples-of-the-median and GDM was examined with multivariate regression. Model predictive performance for early (< 24 weeks’ gestation) and overall GDM diagnosis was evaluated by receiver operating characteristic curves. Results: Glucose, triglycerides, leptin, and lipocalin-2 were higher, while adiponectin was lower, in GDM (p < 0.05). Lipocalin-2 performed best in Caucasians, and triglycerides in South Asians with GDM. Family history of diabetes, previous GDM, South/East Asian ethnicity, parity, BMI, PAPP-A, triglycerides, and lipocalin-2 were significant independent GDM predictors (all p < 0.01), achieving an area under the curve of 0.91 (95% confidence interval [CI] 0.89–0.94) overall, and 0.93 (95% CI 0.89–0.96) for early GDM, in a combined multivariate prediction model. Conclusions: A first-trimester risk prediction model, which incorporates novel maternal lipid markers, accurately identifies women at high risk of GDM, including early GDM.
UR - https://hdl.handle.net/1959.7/uws:67759
U2 - 10.1159/000486853
DO - 10.1159/000486853
M3 - Article
SN - 1421-9964
SN - 1015-3837
VL - 45
SP - 76
EP - 84
JO - Fetal Diagnosis and Therapy
JF - Fetal Diagnosis and Therapy
IS - 2
ER -