A radio continuum study of NGC 2082

J. C. F. Balzan, M. D. Filipovic, S. Dai, R. Z. E. Alsaberi, L. Barnes

Research output: Contribution to journalArticlepeer-review

Abstract

We present radio continuum observations of NGC 2082 using ASKAP, ATCA and Parkes telescopes from 888 MHz to 9000 MHz. Some 20 arcsec from the centre of this nearby spiral galaxy, we discovered a bright and compact radio source, J054149.24–641813.7, of unknown origin. To constrain the nature of J054149.24–641813.7, we searched for transient events with the Ultra-Wideband Low Parkes receiver, and compare its luminosity and spectral index to various nearby supernova remnants (SNRs), and fast radio burst (FRB) local environments. Its radio spectral index is flat (α = 0.02 ± 0.09), which is unlikely to be either an SNR or pulsar. No transient events were detected with the Parkes telescope over three days of observations, and our calculations show J054149.24–641813.7 is two orders of magnitude less luminous than the persistent radio sources associated with FRB 121102 and 190520B. We find that the probability of finding such a source behind NGC 2082 is P = 1.2%, and conclude that the most likely origin for J054149.24–641813.7 is a background quasar or radio galaxy.
Original languageEnglish
Article number61
Number of pages8
JournalAstrophysics and Space Science
Volume367
Issue number6
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'A radio continuum study of NGC 2082'. Together they form a unique fingerprint.

Cite this