A study of the F-giant star Ï´ Scorpii A : a post-merger rapid rotator?

Fiona Lewis, Jeremy Bailey, Daniel V. Cotton, Ian D. Howarth, Lucyna Kedziora-Chudczer, Floor van Leeuwen

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

We report high-precision observations of the linear polarization of the F1III star θ Scorpii. The polarization has a wavelength dependence of the form expected for a rapid rotator, but with an amplitude several times larger than seen in otherwise similar main-sequence stars. This confirms the expectation that lower-gravity stars should have stronger rotational-polarization signatures as a consequence of the density dependence of the ratio of scattering to absorption opacities. By modelling the polarization, together with additional observational constraints (incorporating a revised analysis of Hipparcos astrometry, which clarifies the system's binary status), we determine a set of precise stellar parameters, including a rotation rate ω (= Ω/Ωc ≥ 0.94, polar gravity log (gp)= 2.091 +0.042-0.039 (dex cgs), mass 3.10 +0.37-0.32 M⊙, and luminosity log (L/L⊙) =3.149+0.041-0.028. These values are incompatible with evolutionary models of single rotating stars, with the star rotating too rapidly for its evolutionary stage, and being undermassive for its luminosity. We conclude that θ Sco A is most probably the product of a binary merger.
Original languageEnglish
Pages (from-to)1129-1140
Number of pages12
JournalMonthly Notices of the Royal Astronomical Society
Volume513
Issue number1
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'A study of the F-giant star Ï´ Scorpii A : a post-merger rapid rotator?'. Together they form a unique fingerprint.

Cite this