TY - JOUR
T1 - Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems
AU - Shi, Yu
AU - Delgado-Baquerizo, Manuel
AU - Li, Yuntao
AU - Yang, Yunfeng
AU - Zhu, Yong-Guan
AU - Peñuelas, Josep
AU - Chu, Haiyan
PY - 2020
Y1 - 2020
N2 - Microbial taxa within complex ecological networks can be classified by their universal roles based on their level of connectivity with other taxa. Highly connected taxa within an ecological network (kinless hubs) are theoretically expected to support higher levels of ecosystem functions than less connected taxa (peripherals). Empirical evidence of the role of kinless hubs in regulating the functional potential of soil microbial communities, however, is largely unexplored and poorly understood in agricultural ecosystems. Here, we built a correlation network of fungal and bacterial taxa using a large-scale survey consisting of 243 soil samples across functionally and economically important agricultural ecosystems (wheat and maize); and found that the relative abundance of taxa classified as kinless hubs within the ecological network are positively and significantly correlated with the abundance of functional genes including genes for C fixation, C degradation, C methanol, N cycling, P cycling and S cycling. Structural equation modeling of multiple soil properties further indicated that kinless hubs, but not provincial, connector or peripheral taxa, had direct significant and positive relationships with the abundance of multiple functional genes. Our findings provide novel evidence that the relative abundance of soil taxa classified as kinless hubs within microbial networks are associated with high functional potential, with implications for understanding and managing (through manipulating microbial key species) agricultural ecosystems at a large spatial scale.
AB - Microbial taxa within complex ecological networks can be classified by their universal roles based on their level of connectivity with other taxa. Highly connected taxa within an ecological network (kinless hubs) are theoretically expected to support higher levels of ecosystem functions than less connected taxa (peripherals). Empirical evidence of the role of kinless hubs in regulating the functional potential of soil microbial communities, however, is largely unexplored and poorly understood in agricultural ecosystems. Here, we built a correlation network of fungal and bacterial taxa using a large-scale survey consisting of 243 soil samples across functionally and economically important agricultural ecosystems (wheat and maize); and found that the relative abundance of taxa classified as kinless hubs within the ecological network are positively and significantly correlated with the abundance of functional genes including genes for C fixation, C degradation, C methanol, N cycling, P cycling and S cycling. Structural equation modeling of multiple soil properties further indicated that kinless hubs, but not provincial, connector or peripheral taxa, had direct significant and positive relationships with the abundance of multiple functional genes. Our findings provide novel evidence that the relative abundance of soil taxa classified as kinless hubs within microbial networks are associated with high functional potential, with implications for understanding and managing (through manipulating microbial key species) agricultural ecosystems at a large spatial scale.
UR - https://hdl.handle.net/1959.7/uws:63651
U2 - 10.1016/j.envint.2020.105869
DO - 10.1016/j.envint.2020.105869
M3 - Article
SN - 0160-4120
VL - 142
JO - Environment International
JF - Environment International
M1 - 105869
ER -