AFC1 compound attenuated MI/R-induced ventricular remodeling via inhibiting PDGFR and STAT pathway

Jie Liu, Xiaohui Zhou, Qingshu Meng, Kevin W. Huang, Jing Liu, Jinjun Tie, Rulin Zhuang, Guohan Chen, Yuhui Zhang, Lu Wei, Li Huang, Chun Guang Li, Binghui Wang, Huimin Fan, Zhongmin Liu

Research output: Contribution to journalArticlepeer-review

Abstract

Effective interventions to improve the outcome of patients subjected to myocardial ischemia reperfusion (MI/R) are urgent in clinical settings. Tanshinone IIA (TSA) is reported to attenuate myocardial injury and improve ventricular remodeling post MI/R. Here, we evaluated the efficacy of AFC1 compound that is similar to TSA structure in murine MI/R models. We found that AFC1 had a comparable effect of improving murine cardiac function after MI/R while it was superior to TSA in safety profile. Administration of AFC1 reduced reactive oxygen species (ROS) production, inflammatory cells infiltration, and the expression of platelet derived growth factor receptors (PDGFR) in infarcted myocardium. Treatment with AFC1 also attenuated MI/R-induced cardiac remodeling and contributed to the recovery of cardiac function. Additionally, AFC1 reversed the elevation of PDGFR expression induced by PDGF-AB in both neonatal rat cardiomyocytes (NCMs) and neonatal rat cardiac fibroblasts (NCFs) and suppressed PDGF-AB induced NCM hypertrophy via STAT3 pathway and NCF collagen synthesis through p38-MAPK signaling in vitro. Similarly, AFC1 may contribute to the recovery of cardiac function in mice post MI/R via suppressing STAT signaling. Our results confirmed that AFC1 exerts anti-hypertrophic and anti-fibrotic effects against MI/R-induced cardiac remodeling, and suggest that AFC1 may have a promising potential in improving the outcome of patients who suffered from MI/R.
Original languageEnglish
Article number1142
Number of pages14
JournalFrontiers in Pharmacology
Volume10
DOIs
Publication statusPublished - 2019

Open Access - Access Right Statement

Copyright © 2019 Liu, Zhou, Meng, Huang, Liu, Tie, Zhuang, Chen, Zhang, Wei, Huang, Li, Wang, Fan and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Keywords

  • myocardial reperfusion
  • platelet-derived growth factor
  • ventricular remodeling

Fingerprint

Dive into the research topics of 'AFC1 compound attenuated MI/R-induced ventricular remodeling via inhibiting PDGFR and STAT pathway'. Together they form a unique fingerprint.

Cite this