TY - JOUR
T1 - Algorithmically-generated corpora that use serial compositional principles can contribute to the modeling of sequential pitch structure in non-tonal music
AU - Dean, Roger T.
AU - Pearce, Marcus T.
PY - 2016
Y1 - 2016
N2 - We investigate whether pitch sequences in non-tonal music can be modeled by an information-theoretic approach using algorithmically-generated melodic sequences, made according to 12-tone serial principles, as the training corpus. This is potentially useful, because symbolic corpora of non-tonal music are not readily available. A non-tonal corpus of serially-composed melodies was constructed algorithmically using classic principles of 12-tone music, including prime, inversion, retrograde and retrograde inversion transforms. A similar algorithm generated a tonal melodic corpus of tonal transformations, in each case based on a novel tonal melody and expressed in alternating major keys. A cognitive model of auditory expectation (IDyOM) was used first to analyze the sequential pitch structure of the corpora, in some cases with pre-training on established tonal folk-song corpora (Essen, Schaffrath, 1995). The two algorithmic corpora can be distinguished in terms of their information content, and they were quite different from random corpora and from the folk-song corpus. We then demonstrate that the algorithmic serial corpora can assist modeling of canonical non-tonal compositions by Webern and Schoenberg, and also non-tonal segments of improvisations by skilled musicians. Separately, we developed the process of algorithmic melody composition into a software system (the Serial Collaborator) capable of generating multi-stranded serial keyboard music. Corpora of such keyboard compositions based either on the non-tonal or the tonal melodic corpora were generated and assessed for their information-theoretic modeling properties.
AB - We investigate whether pitch sequences in non-tonal music can be modeled by an information-theoretic approach using algorithmically-generated melodic sequences, made according to 12-tone serial principles, as the training corpus. This is potentially useful, because symbolic corpora of non-tonal music are not readily available. A non-tonal corpus of serially-composed melodies was constructed algorithmically using classic principles of 12-tone music, including prime, inversion, retrograde and retrograde inversion transforms. A similar algorithm generated a tonal melodic corpus of tonal transformations, in each case based on a novel tonal melody and expressed in alternating major keys. A cognitive model of auditory expectation (IDyOM) was used first to analyze the sequential pitch structure of the corpora, in some cases with pre-training on established tonal folk-song corpora (Essen, Schaffrath, 1995). The two algorithmic corpora can be distinguished in terms of their information content, and they were quite different from random corpora and from the folk-song corpus. We then demonstrate that the algorithmic serial corpora can assist modeling of canonical non-tonal compositions by Webern and Schoenberg, and also non-tonal segments of improvisations by skilled musicians. Separately, we developed the process of algorithmic melody composition into a software system (the Serial Collaborator) capable of generating multi-stranded serial keyboard music. Corpora of such keyboard compositions based either on the non-tonal or the tonal melodic corpora were generated and assessed for their information-theoretic modeling properties.
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:42001
U2 - 10.18061/emr.v11i1.4900
DO - 10.18061/emr.v11i1.4900
M3 - Article
SN - 1559-5749
VL - 11
SP - 27
EP - 46
JO - Empirical Musicology Review
JF - Empirical Musicology Review
IS - 1
ER -