Altered C-tactile processing in human dynamic tactile allodynia

Jaquette Liljencrantz, Malin Bjornsdotter, India Morrison, Simon Bergstrand, Marta Ceko, David A. Seminowicz, Jonathan Cole, M. Catherine Bushnell, Hakan Olausson

    Research output: Contribution to journalArticlepeer-review

    60 Citations (Scopus)

    Abstract

    Human unmyelinated (C) tactile afferents signal the pleasantness of gentle skin stroking on hairy (non-glabrous) skin. After neuronal injury, that same type of touch can elicit unpleasant sensations: tactile allodynia. The prevailing pathophysiological explanation is a spinal cord sensitization, triggered by nerve injury, which enables Ab afferents to access pain pathways. However, a recent mouse knockout study demonstrates that C-tactile afferents are necessary for allodynia to develop, suggesting a role for not only Ab but also C-tactile afferent signaling. To examine the contribution of C-tactile afferents to the allodynic condition in humans, we applied the heat/capsaicin model of tactile allodynia in 43 healthy subjects and in 2 sensory neuronopathy patients lacking Ab afferents. Healthy subjects reported tactile-evoked pain, whereas the patients did not. Instead, patients reported their C-touch percept (faint sensation of pleasant touch) to be significantly weaker in the allodynic zone compared to untreated skin. Functional magnetic resonance imaging in 18 healthy subjects and in 1 scanned patient indicated that stroking in the allodynic and control zones evoked different responses in the primary cortical receiving area for thin fiber signaling, the posterior insular cortex. In addition, reduced activation in the medial prefrontal cortices, key areas for C-tactile hedonic processing, was identified. These findings suggest that dynamic tactile allodynia is associated with reduced C-tactile mediated hedonic touch processing. Nevertheless, because the patients did not develop allodynic pain, this seems dependent on Ab signaling, at least under these experimental conditions.
    Original languageEnglish
    Pages (from-to)227-234
    Number of pages8
    JournalPain
    Volume154
    Issue number2
    DOIs
    Publication statusPublished - 2013

    Keywords

    • C, tactile afferents
    • neuropathic pain
    • psychophysics
    • sensory neuronopathy
    • tactile allodynia

    Fingerprint

    Dive into the research topics of 'Altered C-tactile processing in human dynamic tactile allodynia'. Together they form a unique fingerprint.

    Cite this