TY - JOUR
T1 - Altered C-tactile processing in human dynamic tactile allodynia
AU - Liljencrantz, Jaquette
AU - Bjornsdotter, Malin
AU - Morrison, India
AU - Bergstrand, Simon
AU - Ceko, Marta
AU - Seminowicz, David A.
AU - Cole, Jonathan
AU - Bushnell, M. Catherine
AU - Olausson, Hakan
PY - 2013
Y1 - 2013
N2 - Human unmyelinated (C) tactile afferents signal the pleasantness of gentle skin stroking on hairy (non-glabrous) skin. After neuronal injury, that same type of touch can elicit unpleasant sensations: tactile allodynia. The prevailing pathophysiological explanation is a spinal cord sensitization, triggered by nerve injury, which enables Ab afferents to access pain pathways. However, a recent mouse knockout study demonstrates that C-tactile afferents are necessary for allodynia to develop, suggesting a role for not only Ab but also C-tactile afferent signaling. To examine the contribution of C-tactile afferents to the allodynic condition in humans, we applied the heat/capsaicin model of tactile allodynia in 43 healthy subjects and in 2 sensory neuronopathy patients lacking Ab afferents. Healthy subjects reported tactile-evoked pain, whereas the patients did not. Instead, patients reported their C-touch percept (faint sensation of pleasant touch) to be significantly weaker in the allodynic zone compared to untreated skin. Functional magnetic resonance imaging in 18 healthy subjects and in 1 scanned patient indicated that stroking in the allodynic and control zones evoked different responses in the primary cortical receiving area for thin fiber signaling, the posterior insular cortex. In addition, reduced activation in the medial prefrontal cortices, key areas for C-tactile hedonic processing, was identified. These findings suggest that dynamic tactile allodynia is associated with reduced C-tactile mediated hedonic touch processing. Nevertheless, because the patients did not develop allodynic pain, this seems dependent on Ab signaling, at least under these experimental conditions.
AB - Human unmyelinated (C) tactile afferents signal the pleasantness of gentle skin stroking on hairy (non-glabrous) skin. After neuronal injury, that same type of touch can elicit unpleasant sensations: tactile allodynia. The prevailing pathophysiological explanation is a spinal cord sensitization, triggered by nerve injury, which enables Ab afferents to access pain pathways. However, a recent mouse knockout study demonstrates that C-tactile afferents are necessary for allodynia to develop, suggesting a role for not only Ab but also C-tactile afferent signaling. To examine the contribution of C-tactile afferents to the allodynic condition in humans, we applied the heat/capsaicin model of tactile allodynia in 43 healthy subjects and in 2 sensory neuronopathy patients lacking Ab afferents. Healthy subjects reported tactile-evoked pain, whereas the patients did not. Instead, patients reported their C-touch percept (faint sensation of pleasant touch) to be significantly weaker in the allodynic zone compared to untreated skin. Functional magnetic resonance imaging in 18 healthy subjects and in 1 scanned patient indicated that stroking in the allodynic and control zones evoked different responses in the primary cortical receiving area for thin fiber signaling, the posterior insular cortex. In addition, reduced activation in the medial prefrontal cortices, key areas for C-tactile hedonic processing, was identified. These findings suggest that dynamic tactile allodynia is associated with reduced C-tactile mediated hedonic touch processing. Nevertheless, because the patients did not develop allodynic pain, this seems dependent on Ab signaling, at least under these experimental conditions.
KW - C, tactile afferents
KW - neuropathic pain
KW - psychophysics
KW - sensory neuronopathy
KW - tactile allodynia
UR - http://handle.uws.edu.au:8081/1959.7/524230
U2 - 10.1016/j.pain.2012.10.024
DO - 10.1016/j.pain.2012.10.024
M3 - Article
SN - 0304-3959
VL - 154
SP - 227
EP - 234
JO - Pain
JF - Pain
IS - 2
ER -