An optimized direct lysis gene expression microplate assay and applications for disease, differentiation, and pharmacological cell-based studies

Neville S. Ng, Simon Maksour, Jeremy S. Lum, Michelle Newbery, Victoria Shephard, Lezanne Ooi

Research output: Contribution to journalArticlepeer-review

Abstract

Routine cell culture reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) gene expression analysis is limited in scalability due to minimum sample requirement and multistep isolation procedures. In this study, we aimed to optimize and apply a cost-effective and rapid protocol for directly sampling gene expression data from microplate cell cultures. The optimized protocol involves direct lysis of microplate well population followed by a reduced thermocycler reaction time one-step RT-qPCR assay. In applications for inflammation and stress-induced cell-based models, the direct lysis RT-qPCR microplate assay was utilized to detect IFN1 and PPP1R15A expression by poly(I:C) treated primary fibroblast cultures, IL6 expression by poly(I:C) iPSC-derived astrocytes, and differential PPP1R15A expression by ER-stressed vanishing white-matter disease patient induced pluripotent stem cell (iPSC)-derived astrocytes. In application for neural differentiation medium recipe optimizations, conditions were screened for SYN1 and VGLUT1 in neuronal cultures, and S100B, GFAP and EAAT1 in astrocyte cultures. The protocol provides microplate gene expression results from cell lysate to readout within ~35 min, with comparable cost to routine RT-qPCR, and it may be utilized to support laboratory cell-based assays in basic and applied scientific and medical fields of research including stem-cell differentiation, cell physiology, and drug mechanism studies.
Original languageEnglish
Article number364
Number of pages9
JournalBiosensors
Volume12
Issue number6
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'An optimized direct lysis gene expression microplate assay and applications for disease, differentiation, and pharmacological cell-based studies'. Together they form a unique fingerprint.

Cite this