TY - JOUR
T1 - Anion tuning of Zn2+ architectures using a Tris-base salicylic ligand
AU - Fanna, Daniel J.
AU - Craze, Alexander R.
AU - Etchells, Isaac
AU - Bhattacharyya, Saroj
AU - Clegg, Jack K.
AU - Moore, Evan G.
AU - Marjo, Christopher E.
AU - Trinchi, Adrian
AU - Wei, Gang
AU - Reynolds, Jason K.
AU - Li, Feng
PY - 2019
Y1 - 2019
N2 - In this study, a hydroxyl-rich Schiff base ligand, H4L, and its resulting complexes with ZnCl2, Zn(CH3COO)2 and Zn(ClO4)2 were explored. Interestingly, depending on the zinc salt and/or the crystallisation method, four unique structures were obtained. A synthesis with ZnCl2 gave 1, a mononuclear structure ((H3L)2Zn), while with Zn(CH3COO)2, a trinuclear system [(H3L)2Zn3(CH3COO)4], 2, was found. Interestingly two multinuclear architectures were observed with Zn(ClO4)2. Firstly, diethyl ether diffusion of a methanolic reaction mixture with minimal atmospheric air volume gave 3, a hexanuclear architecture of the type [(H2L)4(H3L)2Zn6](ClO4)2, while slow evaporation of a similar mixture gave 4, a nonanuclear architecture with the formula [(H2L)6Zn9(CO3)2](ClO4)2. Compound 4 unexpectedly fixed atmospheric CO2 as CO32−, incorporating it into the architecture. As expected, a diethyl ether diffusion with a larger volume of air (∼100 mL) of a similar methanolic reaction mixture gave a mixture of 3 and 4. In addition, bulk samples of all compounds were also investigated by PXRD, and results are in good agreement with the observed single crystal data. Furthermore, complexes 1-4 were characterised using FT-IR and simultaneous thermal analysis (STA), and additionally the photophysical properties of H4L and complexes 1-4 have also been explored.
AB - In this study, a hydroxyl-rich Schiff base ligand, H4L, and its resulting complexes with ZnCl2, Zn(CH3COO)2 and Zn(ClO4)2 were explored. Interestingly, depending on the zinc salt and/or the crystallisation method, four unique structures were obtained. A synthesis with ZnCl2 gave 1, a mononuclear structure ((H3L)2Zn), while with Zn(CH3COO)2, a trinuclear system [(H3L)2Zn3(CH3COO)4], 2, was found. Interestingly two multinuclear architectures were observed with Zn(ClO4)2. Firstly, diethyl ether diffusion of a methanolic reaction mixture with minimal atmospheric air volume gave 3, a hexanuclear architecture of the type [(H2L)4(H3L)2Zn6](ClO4)2, while slow evaporation of a similar mixture gave 4, a nonanuclear architecture with the formula [(H2L)6Zn9(CO3)2](ClO4)2. Compound 4 unexpectedly fixed atmospheric CO2 as CO32−, incorporating it into the architecture. As expected, a diethyl ether diffusion with a larger volume of air (∼100 mL) of a similar methanolic reaction mixture gave a mixture of 3 and 4. In addition, bulk samples of all compounds were also investigated by PXRD, and results are in good agreement with the observed single crystal data. Furthermore, complexes 1-4 were characterised using FT-IR and simultaneous thermal analysis (STA), and additionally the photophysical properties of H4L and complexes 1-4 have also been explored.
KW - Schiff bases
KW - anions
KW - ligand binding (biochemistry)
UR - http://hdl.handle.net/1959.7/uws:52305
U2 - 10.1039/C9CE00749K
DO - 10.1039/C9CE00749K
M3 - Article
SN - 1466-8033
VL - 21
SP - 4267
EP - 4274
JO - CrystEngComm
JF - CrystEngComm
IS - 29
ER -