TY - JOUR
T1 - Application of artificial intelligence in COVID-19 pandemic : bibliometric analysis
AU - Islam, Md. Mohaimenul
AU - Poly, Tahmina Nasrin
AU - Alsinglawi, Belal
AU - Lin, Li-Fong
AU - Chien, Shuo-Chen
AU - Liu, Ju-Chi
AU - Jian, Wen-Shan
PY - 2021
Y1 - 2021
N2 - The application of artificial intelligence (AI) to health has increased, including to COVID-19. This study aimed to provide a clear overview of COVID-19-related AI publication trends using longitudinal bibliometric analysis. A systematic literature search was conducted on the Web of Science for English language peer-reviewed articles related to AI application to COVID-19. A search strategy was developed to collect relevant articles and extracted bibliographic information (e.g., country, research area, sources, and author). VOSviewer (Leiden University) and Bibliometrix (R package) were used to visualize the co-occurrence networks of authors, sources, countries, institutions, global collaborations, citations, co-citations, and keywords. We included 729 research articles on the application of AI to COVID-19 published between 2020 and 2021. PLOS One (33/729, 4.52%), Chaos Solution Fractals (29/729, 3.97%), and Journal of Medical Internet Research (29/729, 3.97%) were the most common journals publishing these articles. The Republic of China (190/729, 26.06%), the USA (173/729, 23.73%), and India (92/729, 12.62%) were the most prolific countries of origin. The Huazhong University of Science and Technology, Wuhan University, and the Chinese Academy of Sciences were the most productive institutions. This is the first study to show a comprehensive picture of the global efforts to address COVID-19 using AI. The findings of this study also provide insights and research directions for academic researchers, policymakers, and healthcare practitioners who wish to collaborate in these domains in the future.
AB - The application of artificial intelligence (AI) to health has increased, including to COVID-19. This study aimed to provide a clear overview of COVID-19-related AI publication trends using longitudinal bibliometric analysis. A systematic literature search was conducted on the Web of Science for English language peer-reviewed articles related to AI application to COVID-19. A search strategy was developed to collect relevant articles and extracted bibliographic information (e.g., country, research area, sources, and author). VOSviewer (Leiden University) and Bibliometrix (R package) were used to visualize the co-occurrence networks of authors, sources, countries, institutions, global collaborations, citations, co-citations, and keywords. We included 729 research articles on the application of AI to COVID-19 published between 2020 and 2021. PLOS One (33/729, 4.52%), Chaos Solution Fractals (29/729, 3.97%), and Journal of Medical Internet Research (29/729, 3.97%) were the most common journals publishing these articles. The Republic of China (190/729, 26.06%), the USA (173/729, 23.73%), and India (92/729, 12.62%) were the most prolific countries of origin. The Huazhong University of Science and Technology, Wuhan University, and the Chinese Academy of Sciences were the most productive institutions. This is the first study to show a comprehensive picture of the global efforts to address COVID-19 using AI. The findings of this study also provide insights and research directions for academic researchers, policymakers, and healthcare practitioners who wish to collaborate in these domains in the future.
UR - http://hdl.handle.net/1959.7/uws:63001
U2 - 10.3390/healthcare9040441
DO - 10.3390/healthcare9040441
M3 - Article
SN - 2227-9032
VL - 9
JO - Healthcare
JF - Healthcare
IS - 4
M1 - 441
ER -