TY - JOUR
T1 - Application of artificial neural networks in regional flood frequency analysis : a case study for Australia
AU - Aziz, K.
AU - Rahman, A.
AU - Fang, G.
AU - Shrestha, S.
PY - 2014
Y1 - 2014
N2 - Regional flood frequency analysis (RFFA) is widely used in practice to estimate flood quantiles in ungauged catchments. Most commonly adopted RFFA methods such as quantile regression technique (QRT) assume a log-linear relationship between the dependent and a set of predictor variables. As non-linear models and universal approximators, artificial neural networks (ANN) have been widely adopted in rainfall runoff modeling and hydrologic forecasting, but there have been relatively few studies involving the application of ANN to RFFA for estimating flood quantiles in ungauged catchments. This paper thus focuses on the development and testing of an ANN-based RFFA model using an extensive Australian database consisting of 452 gauged catchments. Based on an independent testing, it has been found that ANN-based RFFA model with only two predictor variables can provide flood quantile estimates that are more accurate than the traditional QRT. Seven different regions have been compared with the ANN-based RFFA model and it has been shown that when the data from all the eastern Australian states are combined together to form a single region, the ANN presents the best performing RFFA model. This indicates that a relatively larger dataset is better suited for successful training and testing of the ANN-based RFFA models.
AB - Regional flood frequency analysis (RFFA) is widely used in practice to estimate flood quantiles in ungauged catchments. Most commonly adopted RFFA methods such as quantile regression technique (QRT) assume a log-linear relationship between the dependent and a set of predictor variables. As non-linear models and universal approximators, artificial neural networks (ANN) have been widely adopted in rainfall runoff modeling and hydrologic forecasting, but there have been relatively few studies involving the application of ANN to RFFA for estimating flood quantiles in ungauged catchments. This paper thus focuses on the development and testing of an ANN-based RFFA model using an extensive Australian database consisting of 452 gauged catchments. Based on an independent testing, it has been found that ANN-based RFFA model with only two predictor variables can provide flood quantile estimates that are more accurate than the traditional QRT. Seven different regions have been compared with the ANN-based RFFA model and it has been shown that when the data from all the eastern Australian states are combined together to form a single region, the ANN presents the best performing RFFA model. This indicates that a relatively larger dataset is better suited for successful training and testing of the ANN-based RFFA models.
UR - http://handle.uws.edu.au:8081/1959.7/537794
U2 - 10.1007/s00477-013-0771-5
DO - 10.1007/s00477-013-0771-5
M3 - Article
SN - 1436-3240
VL - 28
SP - 541
EP - 554
JO - Stochastic Environment Research & Risk Assessment
JF - Stochastic Environment Research & Risk Assessment
IS - 3
ER -