Applications, behaviour and design of composite steel-concrete structures

Brian Uy

    Research output: Contribution to journalArticlepeer-review

    13 Citations (Scopus)

    Abstract

    The behaviour of composite steel-concrete beams subjected to pure flexure and the presence of flexure and shear is fairly well understood and provisions do exist in international codes of practice for their design, however in most instances the influence of the concrete slab is not included in the strength design of the composite beam in shear. Combined internal actions including the presence of torsion and flexure have also been considered of late. These actions combine to occur in edge beams and curved composite beams and thus are of significant practical interest. Of increasing interest has become the presence of axial force and flexure in composite beams. These internal actions need to be considered in the design of raking beams of stadia, elevated approach spans for bridges and interchanges and in the design of integral abutment bridges and cable stayed bridges. Furthermore, composite beams in floor systems for braced multi-storey buildings are often required to resist axial force, flexure and shear force. This paper considers the effects of the presence of axial force in conventional composite beams. The effects of different forms of axial force and flexure combinations are considered in this paper. An analytical treatment, experiments and design approaches are given in this paper which is useful for structural engineers. Furthermore research in this area is also discussed. This paper will also present the results of an extensive experimental series to study the behaviour of high performance steel sections subjected to transverse impact loads which are able to simulate either a collision or blast. The experimental program has considered both mild structural steel and stainless steel hollow sections both filled and unfilled being tested. The purpose of the tests was to identify the potential advantages of using concrete infill to increase the energy absorption capability of steel hollow sections.
    Original languageEnglish
    Article number9
    Pages (from-to)1559-1572
    Number of pages14
    JournalAdvances in Structural Engineering
    Volume15
    DOIs
    Publication statusPublished - 2012

    Keywords

    • beams
    • bridges
    • buildings
    • columns
    • composite construction
    • steel, structural

    Fingerprint

    Dive into the research topics of 'Applications, behaviour and design of composite steel-concrete structures'. Together they form a unique fingerprint.

    Cite this