TY - JOUR
T1 - Artificial intelligence-based regional flood frequency analysis methods : a scoping review
AU - Zalnezhad, Amir
AU - Rahman, Ataur
AU - Nasiri, Nastaran
AU - Haddad, Khaled
AU - Rahman, Muhammad Muhitur
AU - Vafakhah, Mehdi
AU - Samali, Bijan
AU - Ahamed, Farhad
PY - 2022
Y1 - 2022
N2 - Flood is one of the most destructive natural disasters, causing significant economic damage and loss of lives. Numerous methods have been introduced to estimate design floods, which include linear and non-linear techniques. Since flood generation is a non-linear process, the use of linear techniques has inherent weaknesses. To overcome these, artificial intelligence (AI)-based non-linear regional flood frequency analysis (RFFA) techniques have been introduced over the last two decades. There are limited articles available in the literature discussing the relative merits/demerits of these AI-based RFFA techniques. To fill this knowledge gap, a scoping review on the AI-based RFFA techniques is presented. Based on the Scopus database, more than 1000 articles were initially selected, which were then screened manually to select the most relevant articles. The accuracy and efficiency of the selected RFFA techniques based on a set of evaluation statistics were compared. Furthermore, the relationships among countries and researchers focusing on AI-based RFFA techniques are illustrated. In terms of performance, artificial neural networks (ANN) are found to be the best performing techniques among all the selected AI-based RFFA techniques. It is also found that Australia, Canada, and Iran have published the highest number of articles in this research field, followed by Turkey, the United Arab Emirates (UAE), India, and China. Future research should be directed towards identification of the impacts of data quantity and quality, model uncertainty and climate change on the AI-based RFFA techniques.
AB - Flood is one of the most destructive natural disasters, causing significant economic damage and loss of lives. Numerous methods have been introduced to estimate design floods, which include linear and non-linear techniques. Since flood generation is a non-linear process, the use of linear techniques has inherent weaknesses. To overcome these, artificial intelligence (AI)-based non-linear regional flood frequency analysis (RFFA) techniques have been introduced over the last two decades. There are limited articles available in the literature discussing the relative merits/demerits of these AI-based RFFA techniques. To fill this knowledge gap, a scoping review on the AI-based RFFA techniques is presented. Based on the Scopus database, more than 1000 articles were initially selected, which were then screened manually to select the most relevant articles. The accuracy and efficiency of the selected RFFA techniques based on a set of evaluation statistics were compared. Furthermore, the relationships among countries and researchers focusing on AI-based RFFA techniques are illustrated. In terms of performance, artificial neural networks (ANN) are found to be the best performing techniques among all the selected AI-based RFFA techniques. It is also found that Australia, Canada, and Iran have published the highest number of articles in this research field, followed by Turkey, the United Arab Emirates (UAE), India, and China. Future research should be directed towards identification of the impacts of data quantity and quality, model uncertainty and climate change on the AI-based RFFA techniques.
UR - https://hdl.handle.net/1959.7/uws:69211
U2 - 10.3390/w14172677
DO - 10.3390/w14172677
M3 - Article
SN - 2073-4441
VL - 14
JO - Water
JF - Water
IS - 17
M1 - 2677
ER -