TY - JOUR
T1 - Assessing the potential of using biochar in mine rehabilitation under elevated atmospheric CO2 concentration
AU - Zhang, Yaling
AU - Menke, Carl
AU - Drigo, Barbara
AU - Bai, Shahla Hosseini
AU - Anderson, Ian
AU - Xu, Zhihong
AU - Chen, Hong
AU - Zhang, Manyun
PY - 2017
Y1 - 2017
N2 - Purpose: Re-establishment of soil nitrogen (N) capital is a priority in mine rehabilitation. We aimed to evaluate the effects of biochar addition on improving mine spoil N pools and the influence of elevated CO2 concentration on mine rehabilitation. Materials and methods: We assessed the effects of pinewood biochar, produced at three temperatures (650, 750 and 850°C, referred as B650, B750 and B850, respectively), on mine spoil total N concentrations with five different plant species, including a tree species (Eucalyptus crebra), N-fixing shrubs (Acacia floribunda and Allocasuarina littoralis) and C3 and C4 grasses (Austrodanthonia tenuior and Themeda australis) incubated at ambient (400 μL L−1) and elevated (700 μL L−1) atmospheric CO2 concentrations, as well as the effects of elevated CO2 on mine rehabilitation. Results and discussion: Soil total N significantly improved following biochar incorporation under all plant species (P< 0.05) except for T. Australis. E. crebra had the highest soil total N (0.197%, 0.198% and 0.212% for B650, B750 and B850, respectively). Different from the negligible influence of elevated CO2 on soil properties under the grasses and the N-fixing shrubs, elevated CO2 significantly increased soil water and hot water extractable organic C (WEOC and HWEOC, respectively) and decreased total C under E. crebra, indicating that the nutrient demands were not met. Conclusions: Biochar addition showed the potential in mine rehabilitation in terms of improving soil N pool, especially with E. crebra. However, it would be more difficulty to rehabilitate mine spoils in future with the rising atmospheric CO2 concentration.
AB - Purpose: Re-establishment of soil nitrogen (N) capital is a priority in mine rehabilitation. We aimed to evaluate the effects of biochar addition on improving mine spoil N pools and the influence of elevated CO2 concentration on mine rehabilitation. Materials and methods: We assessed the effects of pinewood biochar, produced at three temperatures (650, 750 and 850°C, referred as B650, B750 and B850, respectively), on mine spoil total N concentrations with five different plant species, including a tree species (Eucalyptus crebra), N-fixing shrubs (Acacia floribunda and Allocasuarina littoralis) and C3 and C4 grasses (Austrodanthonia tenuior and Themeda australis) incubated at ambient (400 μL L−1) and elevated (700 μL L−1) atmospheric CO2 concentrations, as well as the effects of elevated CO2 on mine rehabilitation. Results and discussion: Soil total N significantly improved following biochar incorporation under all plant species (P< 0.05) except for T. Australis. E. crebra had the highest soil total N (0.197%, 0.198% and 0.212% for B650, B750 and B850, respectively). Different from the negligible influence of elevated CO2 on soil properties under the grasses and the N-fixing shrubs, elevated CO2 significantly increased soil water and hot water extractable organic C (WEOC and HWEOC, respectively) and decreased total C under E. crebra, indicating that the nutrient demands were not met. Conclusions: Biochar addition showed the potential in mine rehabilitation in terms of improving soil N pool, especially with E. crebra. However, it would be more difficulty to rehabilitate mine spoils in future with the rising atmospheric CO2 concentration.
KW - Acacia
KW - Eucalyptus crebra
KW - biochar
KW - grasses
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:43757
U2 - 10.1007/s11368-017-1765-6
DO - 10.1007/s11368-017-1765-6
M3 - Article
SN - 1439-0108
VL - 17
SP - 2410
EP - 2419
JO - Journal of soils and sediments
JF - Journal of soils and sediments
IS - 10
ER -