Abstract
A landscape's long-term capacity to retain, utilize and recycle local resources is an objective basis for assessing its ecological functionality or condition. In subtropical and tropical drylands, where plant growth is moisture-limited for much of the time, land condition is reflected in the local water balance. The ratio of long-term actual evapotranspiration and precipitation (Ea/P) is proposed as an objective indicator of dryland condition. A spatial modelling framework is developed for the quantification of Ea/P over large areas using remotely sensed vegetation density patterns. Model parameters arc defined by two particular situations: (i) non-vegetated sites, where Ea/P depends on the long-term runoff coefficient of bare soil surfaces (RCbs), and (ii) non-degraded sites with a vegetation density close to the potential value for which Ea/ P≅1.0. Specht's evaporative coefficient is used as an independent variable for the prediction of the potential vegetation density, whereas RCbs is estimated with the curve number method. The performance of the method was evaluated in a 900 km2 area in south-east Spain, where predicted land condition was found to be in good agreement with qualitative field observations on the nature and intensity of land degradation processes.
Original language | English |
---|---|
Number of pages | 21 |
Journal | International Journal of Remote Sensing |
Publication status | Published - 2005 |
Keywords
- Spain
- arid regions
- soil erosion
- soil moisture
- vegetation dynamics
- water balance (hydrology)