Automated quantification of neurite outgrowth orientation distributions on patterned surfaces

Matthew Payne, Dadong Wang, Catriona M. Sinclair, Robert M. I. Kapsa, Anita F. Quigley, Gordon G. Wallace, Joselito M. Razal, Ray H. Baughman, Gerald Muench, Pascal Vallotton

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)

    Abstract

    Objective. We have developed an image analysis methodology for quantifying the anisotropy of neuronal projections on patterned substrates. Approach. Our method is based on the fitting of smoothing splines to the digital traces produced using a non-maximum suppression technique. This enables precise estimates of the local tangents uniformly along the neurite length, and leads to unbiased orientation distributions suitable for objectively assessing the anisotropy induced by tailored surfaces. Main results. In our application, we demonstrate that carbon nanotubes arrayed in parallel bundles over gold surfaces induce a considerable neurite anisotropy; a result which is relevant for regenerative medicine. Significance. Our pipeline is generally applicable to the study of fibrous materials on 2D surfaces and should also find applications in the study of DNA, microtubules, and other polymeric materials.
    Original languageEnglish
    Article number46006
    Number of pages12
    JournalJournal of Neural Engineering
    Volume11
    Issue number46006
    DOIs
    Publication statusPublished - 2014

    Fingerprint

    Dive into the research topics of 'Automated quantification of neurite outgrowth orientation distributions on patterned surfaces'. Together they form a unique fingerprint.

    Cite this