Belowground chemical signaling in maize : when simplicity rhymes with efficiency

Ivan Hiltpold, Ted C. J. Turlings

    Research output: Contribution to journalArticlepeer-review

    107 Citations (Scopus)

    Abstract

    Maize roots respond to feeding by larvae of the beetle Diabrotica virgifera virgifera by releasing (E)-β-caryophyllene. This sesquiterpene, which is not found in healthy maize roots, attracts the entomopathogenic nematode Heterorhabditis megidis. In sharp contrast to the emission of virtually only this single compound by damaged roots, maize leaves emit a blend of numerous volatile organic compounds in response to herbivory. To try to explain this difference between roots and leaves, we studied the diffusion properties of various maize volatiles in sand and soil. The best diffusing compounds were found to be terpenes. Only one other sesquiterpene known for maize, α-copaene, diffused better than (E)-β-caryophyllene, but biosynthesis of the former is far more costly for the plant than the latter. The diffusion of (E)-β-caryophyllene occurs through the gaseous rather than the aqueous phase, as it was found to diffuse faster and further at low moisture level. However, a water layer is needed to prevent complete loss through vertical diffusion, as was found for totally dry sand. Hence, it appears that maize has adapted to emit a readily diffusing and cost-effective belowground signal from its insect-damaged roots.
    Original languageEnglish
    Pages (from-to)628-635
    Number of pages8
    JournalJournal of Chemical Ecology
    Volume34
    Issue number5
    DOIs
    Publication statusPublished - 2008

    Keywords

    • corn
    • maize
    • roots (botany)
    • tritrophic interactions

    Fingerprint

    Dive into the research topics of 'Belowground chemical signaling in maize : when simplicity rhymes with efficiency'. Together they form a unique fingerprint.

    Cite this