Abstract
Bifurcation theory is commonly used to study the dynamical behavior of ecosystems. It involves the analysis of points in the parameter space where the stability of the system changes qualitatively. The type of bifurcation that associates equilibria with periodic solution is called Hopf bifurcation. In this paper, a life energy system dynamic model of two components with multiple delays is presented. It is shown that the interaction parameters of the delayed ecosystem play a fundamental role in classifying the rich dynamics and bifurcation phenomena. Regarding the combined interaction parameter as a bifurcation parameter, the bifurcation values in the parameter plane are displayed. The direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by applying the normal form theory and the center manifold theorem. Moreover, the amplitudes of oscillations always increase as the interaction parameters increase, while the robustness of periods occurs as the interaction parameters vary. From an ecological point of view, the existence of Hopf bifurcation expresses periodic oscillatory behavior of the life energy system.
Original language | English |
---|---|
Pages (from-to) | 2647-2669 |
Number of pages | 23 |
Journal | Journal of the Franklin Institute |
Volume | 348 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- Hopf bifurcation
- bifurcation theory
- ecosystems