TY - JOUR
T1 - Biochar addition induced the same plant responses as elevated CO2 in mine spoil
AU - Zhang, Yaling
AU - Drigo, Barbara
AU - Bai, Shahla Hosseini
AU - Menke, Carl
AU - Zhang, Manyun
AU - Xu, Zhihong
PY - 2017
Y1 - 2017
N2 - Nitrogen (N) limitation is one of the major constrain factors for biochar in improving plant growth, the same for elevated atmospheric carbon dioxide (CO2). Hence, we hypothesized that (1) biochar would induce the same plant responses as elevated CO2 under N-poor conditions; (2) elevated CO2 would decrease the potential of biochar application in improving plant growth. To test these hypotheses, we assessed the effects of pinewood biochar, produced at three pyrolytic temperatures (650, 750 and 850 °C), on C and N allocation at the whole-plant level of three plant species (Austrostipa ramossissima, Dichelachne micrantha and Isolepis nodosa) grown in the N poor mine spoil under both ambient (400 μL L−1) and elevated (700 μL L−1) CO2 concentrations. Our data showed that biochar addition (1) significantly decreased leaf total N and δ15N (P < 0.05); (2) decreased leaf total N and δ15N more pronouncedly than those of root; and (3) showed more pronounced effects on improving plant biomass under ambient CO2 than under elevated CO2 concentration. Hence, it remained a strong possibility that biochar addition induced the same plant physiological responses as elevated CO2 in the N-deficient mine spoil. As expected, elevated CO2 decreased the ability of biochar addition in improving plant growth.
AB - Nitrogen (N) limitation is one of the major constrain factors for biochar in improving plant growth, the same for elevated atmospheric carbon dioxide (CO2). Hence, we hypothesized that (1) biochar would induce the same plant responses as elevated CO2 under N-poor conditions; (2) elevated CO2 would decrease the potential of biochar application in improving plant growth. To test these hypotheses, we assessed the effects of pinewood biochar, produced at three pyrolytic temperatures (650, 750 and 850 °C), on C and N allocation at the whole-plant level of three plant species (Austrostipa ramossissima, Dichelachne micrantha and Isolepis nodosa) grown in the N poor mine spoil under both ambient (400 μL L−1) and elevated (700 μL L−1) CO2 concentrations. Our data showed that biochar addition (1) significantly decreased leaf total N and δ15N (P < 0.05); (2) decreased leaf total N and δ15N more pronouncedly than those of root; and (3) showed more pronounced effects on improving plant biomass under ambient CO2 than under elevated CO2 concentration. Hence, it remained a strong possibility that biochar addition induced the same plant physiological responses as elevated CO2 in the N-deficient mine spoil. As expected, elevated CO2 decreased the ability of biochar addition in improving plant growth.
KW - atmospheric carbon dioxide
KW - biochar
KW - mine soils
KW - nitrogen
KW - plant biomass
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:44041
U2 - 10.1007/s11356-017-0574-1
DO - 10.1007/s11356-017-0574-1
M3 - Article
SN - 0944-1344
VL - 25
SP - 1460
EP - 1469
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 2
ER -