TY - JOUR
T1 - Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing
AU - Shakoor, Awais
AU - Ashraf, Fatima
AU - Shakoor, Saba
AU - Mustafa, Adnan
AU - Rehman, Abdul
AU - Altaf, Muhammad Mohsin
PY - 2020
Y1 - 2020
N2 - Carbon dioxide (CO2) is mainly universal greenhouse gas associated with climate change. However, beyond CO2, some other greenhouse gases (GHGs) like methane (CH4) and nitrous oxide (N2O), being two notable gases, contribute to global warming. Since 1900, the concentrations of CO2 and non-CO2 GHG emissions have been elevating, and due to the effects of the previous industrial revolution which is responsible for climate forcing. Globally, emissions of CO2, CH4, and N2O from agricultural sectors are increasing as around 1% annually. Moreover, deforestation also contributes 12–17% of total global GHGs. Perhaps, the average temperature is likely to increase globally, at least 2àðC by 2100—by mid-century. These circumstances are responsible for climate forcing, which is the source of various human health diseases and environmental risks. From agricultural soils, rhizospheric microbial communities have a significant role in the emissions of greenhouse gases. Every year, microbial communities release approximately 1.5–3 billion tons of carbon into the atmospheric environment. Microbial nitrification, denitrification, and respiration are the essential processes that affect the nitrogen cycle in the terrestrial environment. In the twenty-first century, climate change is the major threat faced by human beings. Climate change adversely influences human health to cause numerous diseases due to their direct association with climate change. This review highlights the different anthropogenic GHG emission sources, the response of microbial communities to climate change, climate forcing potential, and mitigation strategies through different agricultural management approaches and microbial communities.
AB - Carbon dioxide (CO2) is mainly universal greenhouse gas associated with climate change. However, beyond CO2, some other greenhouse gases (GHGs) like methane (CH4) and nitrous oxide (N2O), being two notable gases, contribute to global warming. Since 1900, the concentrations of CO2 and non-CO2 GHG emissions have been elevating, and due to the effects of the previous industrial revolution which is responsible for climate forcing. Globally, emissions of CO2, CH4, and N2O from agricultural sectors are increasing as around 1% annually. Moreover, deforestation also contributes 12–17% of total global GHGs. Perhaps, the average temperature is likely to increase globally, at least 2àðC by 2100—by mid-century. These circumstances are responsible for climate forcing, which is the source of various human health diseases and environmental risks. From agricultural soils, rhizospheric microbial communities have a significant role in the emissions of greenhouse gases. Every year, microbial communities release approximately 1.5–3 billion tons of carbon into the atmospheric environment. Microbial nitrification, denitrification, and respiration are the essential processes that affect the nitrogen cycle in the terrestrial environment. In the twenty-first century, climate change is the major threat faced by human beings. Climate change adversely influences human health to cause numerous diseases due to their direct association with climate change. This review highlights the different anthropogenic GHG emission sources, the response of microbial communities to climate change, climate forcing potential, and mitigation strategies through different agricultural management approaches and microbial communities.
UR - https://hdl.handle.net/1959.7/uws:71098
U2 - 10.1007/s11356-020-10151-1
DO - 10.1007/s11356-020-10151-1
M3 - Article
VL - 27
SP - 38513
EP - 38536
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 31
ER -