TY - JOUR
T1 - Biological soil crusts increase the resistance of soil nitrogen dynamics to changes in temperatures in a semi-arid ecosystem
AU - Delgado-Baquerizo, Manuel
AU - Maestre, Fernando T.
AU - Gallardo, Antonio
PY - 2013
Y1 - 2013
N2 - Aims: Biological soil crusts (BSCs), composed of mosses, lichens, liverworts and cyanobacteria, are a key component of arid and semi-arid ecosystems worldwide, and play key roles modulating several aspects of the nitrogen (N) cycle, such as N fixation and mineralization. While the performance of its constituent organisms largely depends on moisture and rainfall conditions, the influence of these environmental factors on N transformations under BSC soils has not been evaluated before. Methods: The study was done using soils collected from areas devoid of vascular plants with and without lichen-dominated BSCs from a semi-arid Stipa tenacissima grassland. Soil samples were incubated under different temperature (T) and soil water content (SWC) conditions, and changes in microbial biomass-N, dissolved organic nitrogen (DON), amino acids, ammonium, nitrate and both inorganic N were monitored. To evaluate how BSCs modulate the resistance of the soil to changes in T and SWC, we estimated the Orwin and Wardle Resistance index. Results: The different variables studied were more affected by changes in T than by variations in SWC at both BSC-dominated and bare ground soils. However, under BSCs, a change in the dominance of N processes from a net nitrification to a net ammonification was observed at the highest SWC, regardless of T. Conclusions: Our results suggest that the N cycle is more resistant to changes in T in BSC-dominated than in bare ground areas. They also indicate that BSCs could play a key role in minimizing the likely impacts of climate change on the dynamics of N in semi-arid environments, given the prevalence and cover of these organisms worldwide.
AB - Aims: Biological soil crusts (BSCs), composed of mosses, lichens, liverworts and cyanobacteria, are a key component of arid and semi-arid ecosystems worldwide, and play key roles modulating several aspects of the nitrogen (N) cycle, such as N fixation and mineralization. While the performance of its constituent organisms largely depends on moisture and rainfall conditions, the influence of these environmental factors on N transformations under BSC soils has not been evaluated before. Methods: The study was done using soils collected from areas devoid of vascular plants with and without lichen-dominated BSCs from a semi-arid Stipa tenacissima grassland. Soil samples were incubated under different temperature (T) and soil water content (SWC) conditions, and changes in microbial biomass-N, dissolved organic nitrogen (DON), amino acids, ammonium, nitrate and both inorganic N were monitored. To evaluate how BSCs modulate the resistance of the soil to changes in T and SWC, we estimated the Orwin and Wardle Resistance index. Results: The different variables studied were more affected by changes in T than by variations in SWC at both BSC-dominated and bare ground soils. However, under BSCs, a change in the dominance of N processes from a net nitrification to a net ammonification was observed at the highest SWC, regardless of T. Conclusions: Our results suggest that the N cycle is more resistant to changes in T in BSC-dominated than in bare ground areas. They also indicate that BSCs could play a key role in minimizing the likely impacts of climate change on the dynamics of N in semi-arid environments, given the prevalence and cover of these organisms worldwide.
UR - http://handle.uws.edu.au:8081/1959.7/549270
U2 - 10.1007/s11104-012-1404-3
DO - 10.1007/s11104-012-1404-3
M3 - Article
SN - 0032-079X
VL - 366
SP - 35
EP - 47
JO - Plant and Soil
JF - Plant and Soil
IS - 45323
ER -