Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony

Shaopeng Wang, Michel Loreau, Claire de Mazancourt, Forest Isbell, Carl Beierkuhnlein, John Connolly, Douglas H. Deutschman, Jiri Dolezal, Nico Eisenhauer, Andy Hector, Anke Jentsch, Jüergen Kreyling, Vojtech Lanta, Jan Leps, H. Wayne Polley, Peter B. Reich, Jasper van Ruijven, Bernhard Schmid, David Tilman, Brian WilseyDylan Craven

Research output: Contribution to journalArticlepeer-review

Abstract

Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.
Original languageEnglish
Article numbere03332
Number of pages10
JournalEcology
Volume102
Issue number6
DOIs
Publication statusPublished - 2021

Open Access - Access Right Statement

©2021 The Authors. Ecology published by Wiley Periodicals LLC on behalf of Ecological Society of America. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Fingerprint

Dive into the research topics of 'Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony'. Together they form a unique fingerprint.

Cite this