TY - JOUR
T1 - Blockchain-driven IoT for food traceability with an integrated consensus mechanism
AU - Tsang, Yung Po
AU - Choy, King Lun
AU - Wu, Chun Ho
AU - Ho, George To Sum
AU - Lam, Hoi Yan
PY - 2019
Y1 - 2019
N2 - Food traceability has been one of the emerging blockchain applications in recent years, for improving the areas of anti-counterfeiting and quality assurance. Existing food traceability systems do not guarantee a high level of system reliability, scalability, and information accuracy. Moreover, the traceability process is time-consuming and complicated in modern supply chain networks. To alleviate these concerns, blockchain technology is promising to create a new ontology for supply chain traceability. However, most consensus mechanisms and data flow in blockchain are developed for cryptocurrency, not for supply chain traceability; hence, simply applying blockchain technology to food traceability is impractical. In this paper, a blockchain-IoT-based food traceability system (BIFTS) is proposed to integrate the novel deployment of blockchain, IoT technology, and fuzzy logic into a total traceability shelf life management system for managing perishable food. To address the needs for food traceability, lightweight and vaporized characteristics are deployed in the blockchain, while an integrated consensus mechanism that considers shipment transit time, stakeholder assessment, and shipment volume is developed. The data flow of blockchain is then aligned to the deployment of IoT technologies according to the level of traceable resource units. Subsequently, the decision support can be established in the food supply chain by using reliable and accurate data for shelf life adjustment, and by using fuzzy logic for quality decay evaluation.
AB - Food traceability has been one of the emerging blockchain applications in recent years, for improving the areas of anti-counterfeiting and quality assurance. Existing food traceability systems do not guarantee a high level of system reliability, scalability, and information accuracy. Moreover, the traceability process is time-consuming and complicated in modern supply chain networks. To alleviate these concerns, blockchain technology is promising to create a new ontology for supply chain traceability. However, most consensus mechanisms and data flow in blockchain are developed for cryptocurrency, not for supply chain traceability; hence, simply applying blockchain technology to food traceability is impractical. In this paper, a blockchain-IoT-based food traceability system (BIFTS) is proposed to integrate the novel deployment of blockchain, IoT technology, and fuzzy logic into a total traceability shelf life management system for managing perishable food. To address the needs for food traceability, lightweight and vaporized characteristics are deployed in the blockchain, while an integrated consensus mechanism that considers shipment transit time, stakeholder assessment, and shipment volume is developed. The data flow of blockchain is then aligned to the deployment of IoT technologies according to the level of traceable resource units. Subsequently, the decision support can be established in the food supply chain by using reliable and accurate data for shelf life adjustment, and by using fuzzy logic for quality decay evaluation.
UR - https://hdl.handle.net/1959.7/uws:66067
U2 - 10.1109/ACCESS.2019.2940227
DO - 10.1109/ACCESS.2019.2940227
M3 - Article
SN - 2169-3536
VL - 7
SP - 129000
EP - 129017
JO - IEEE Access
JF - IEEE Access
M1 - 8830460
ER -