Blood pressure wave propagation : a multisensor setup for cerebral autoregulation studies

Aleksandra Zienkiewicz, Michelle Favre, Hany Ferdinando, Stephanie Iring, Jorge M. Serrador, Teemu Myllyla

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Objective. Cerebral autoregulation is critically important to maintain proper brain perfusion and supply the brain with oxygenated blood. Non-invasive measures of blood pressure (BP) are critical in assessing cerebral autoregulation. Wave propagation velocity may be a useful technique to estimate BP but the effect of the location of the sensors on the readings has not been thoroughly examined. In this paper, we were interested in studying whether the propagation velocity of a pressure wave in the direction from the heart to the brain may differ compared with propagation from the heart to the periphery, as well as across different physiological tasks and/or health conditions. Using non-invasive sensors simultaneously placed at different locations of the human body allows for the study of how the propagation velocity of the pressure wave, based on pulse transit time (PTT), varies across different directions. Approach. We present a multi-sensor BP wave propagation measurement setup intended for cerebral autoregulation studies. The presented sensor setup consists of three sensors, one placed on each of the neck, chest and finger, allowing simultaneous measurement of changes in BP propagation velocity towards the brain and to the periphery. We show how commonly tested physiological tasks affect the relative changes of PTT and correlations with BP. Main results. We observed that during maximal blow, valsalva and breath hold breathing tasks, the relative changes of PTT were higher when PTT was measured in the direction from the heart to the brain than from the heart to the peripherals. In contrast, during a deep breathing task, the relative change in PTT from the heart to the brain was lower. In addition, we present a short literature review of the PTT methods used in brain research. Significance. These preliminary data suggest that the physiological task and direction of PTT measurement may affect relative PTT changes. The presented three-sensor setup provides an easy and neuroimaging compatible method for cerebral autoregulation studies by allowing measurement of BP wave propagation velocity towards the brain versus towards the periphery.
Original languageEnglish
Article number115007
Number of pages12
JournalPhysiological Measurement
Volume42
Issue number11
Publication statusPublished - 2021

Open Access - Access Right Statement

© 2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 (https://creativecommons.org/licenses/by/4.0/) licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Fingerprint

Dive into the research topics of 'Blood pressure wave propagation : a multisensor setup for cerebral autoregulation studies'. Together they form a unique fingerprint.

Cite this