TY - JOUR
T1 - Bond behavior of basalt textile meshes in ultra-high ductility cementitious composites
AU - Jiang, Jiafei
AU - Jiang, Cheng
AU - Li, Benben
AU - Feng, Peng
PY - 2019
Y1 - 2019
N2 - Textile reinforced mortar (TRM) is a composite used in engineering applications of fiber reinforced polymer (FRP) materials. Although TRM can solve the fire resistance and durability issues from epoxy resin, the brittle fracture of traditional mortar greatly influences the bond behavior between the matrix and fibers and subsequently causes a significant decrease in the efficiency of fibers/textiles. A new engineered cementitious composite (ECC), the ultra-high ductility cementitious composite (UHDCC), was recently proposed to replace the mortar in TRM and bond with the textile meshes (termed the TR-UHDCC). This material has the features of multi-microcracking, high strength and ductility under tension. Fundamentally, stress transfer from the textile to the matrix is accomplished through the bond properties, which affect the tensile behaviors of TR-UHDCCs. In this paper, an experimental study on the basalt textile mesh reinforced UHDCC is presented. Double-sided pull-out tests were carried out on 54 specimens. The bond performance was studied by varying the embedded length and mesh geometric properties (mesh spacing and mesh aspect ratio). The restraint of weft yarns was investigated in this study and considered in the bond-slip model for TR-UHDCCs with different textile meshes.
AB - Textile reinforced mortar (TRM) is a composite used in engineering applications of fiber reinforced polymer (FRP) materials. Although TRM can solve the fire resistance and durability issues from epoxy resin, the brittle fracture of traditional mortar greatly influences the bond behavior between the matrix and fibers and subsequently causes a significant decrease in the efficiency of fibers/textiles. A new engineered cementitious composite (ECC), the ultra-high ductility cementitious composite (UHDCC), was recently proposed to replace the mortar in TRM and bond with the textile meshes (termed the TR-UHDCC). This material has the features of multi-microcracking, high strength and ductility under tension. Fundamentally, stress transfer from the textile to the matrix is accomplished through the bond properties, which affect the tensile behaviors of TR-UHDCCs. In this paper, an experimental study on the basalt textile mesh reinforced UHDCC is presented. Double-sided pull-out tests were carried out on 54 specimens. The bond performance was studied by varying the embedded length and mesh geometric properties (mesh spacing and mesh aspect ratio). The restraint of weft yarns was investigated in this study and considered in the bond-slip model for TR-UHDCCs with different textile meshes.
UR - https://hdl.handle.net/1959.7/uws:62053
U2 - 10.1016/j.compositesb.2019.107022
DO - 10.1016/j.compositesb.2019.107022
M3 - Article
SN - 1359-8368
VL - 174
JO - Composites Part B: Engineering
JF - Composites Part B: Engineering
M1 - 107022
ER -