TY - JOUR
T1 - Building energy optimisation under uncertainty using ACOMV algorithm
AU - Bamdad, Keivan
AU - Cholette, Michael E.
AU - Guan, Lisa
AU - Bell, John
PY - 2018
Y1 - 2018
N2 - In building optimisation many parameters are uncertain due to their dependence on the building operation and environment (e.g. internal loads). This uncertainty implies that the “optimised” building is likely sub-optimal for the actual parameters. This study develops a new scenario-based optimisation methodology to address building parameter uncertainty. A multi-objective optimisation problem based on three objective functions (“low”, “base”, and “high” simulation scenarios) is developed and scalarised using the weighted sum method to find the optimised compromise between energy use for different scenarios. Necessitated by the increased computational demand of multi-objective problems, a modified version of the Ant Colony Optimisation algorithm for Mixed Variables (ACOMV-M) is developed. A comparison between ACOMV-M and a benchmark algorithm showed that ACOMV-M converged to solutions of similar quality with approximately 50% fewer simulations. The results on an Australian office building showed that the energy-optimised building parameters can vary significantly for different assumptions. Furthermore, inaccurate assumptions on internal loads and infiltration rate can reduce energy savings achieved by optimisation up to 4.8 percentage points. The proposed methodology is used to identify parameters that are sensitive to different scenarios and demonstrated that more robust solutions can be achieved through modest sacrifices in optimality to any one scenario.
AB - In building optimisation many parameters are uncertain due to their dependence on the building operation and environment (e.g. internal loads). This uncertainty implies that the “optimised” building is likely sub-optimal for the actual parameters. This study develops a new scenario-based optimisation methodology to address building parameter uncertainty. A multi-objective optimisation problem based on three objective functions (“low”, “base”, and “high” simulation scenarios) is developed and scalarised using the weighted sum method to find the optimised compromise between energy use for different scenarios. Necessitated by the increased computational demand of multi-objective problems, a modified version of the Ant Colony Optimisation algorithm for Mixed Variables (ACOMV-M) is developed. A comparison between ACOMV-M and a benchmark algorithm showed that ACOMV-M converged to solutions of similar quality with approximately 50% fewer simulations. The results on an Australian office building showed that the energy-optimised building parameters can vary significantly for different assumptions. Furthermore, inaccurate assumptions on internal loads and infiltration rate can reduce energy savings achieved by optimisation up to 4.8 percentage points. The proposed methodology is used to identify parameters that are sensitive to different scenarios and demonstrated that more robust solutions can be achieved through modest sacrifices in optimality to any one scenario.
UR - https://hdl.handle.net/1959.7/uws:60910
U2 - 10.1016/j.enbuild.2018.02.053
DO - 10.1016/j.enbuild.2018.02.053
M3 - Article
VL - 167
SP - 322
EP - 333
JO - Energy and Buildings
JF - Energy and Buildings
ER -