Casimir effect on the worldline

Gies Holger, Kurt Langfeld, Laurent Moyaerts

Research output: Contribution to journalArticlepeer-review

117 Citations (Scopus)

Abstract

We develop a method to compute the Casimir effect for arbitrary geometries. The method is based on the string-inspired worldline approach to quantum field theory and its numerical realization with Monte-Carlo techniques. Concentrating on Casimir forces between rigid bodies induced by a fluctuating scalar field, we test our method with the parallel-plate configuration. For the experimentally relevant sphere-plate configuration, we study curvature effects quantitatively and perform a comparison with the "proximity force approximation", which is the standard approximation technique. Sizable curvature effects are found for a distance-to-curvature-radius ratio of a/R greater than or similar to 0.02. Our method is embedded in renormalizable quantum field theory with a controlled treatment of the UV divergencies. As a technical by-product, we develop various efficient algorithms for generating closed-loop ensembles with gauBian distribution.
Original languageEnglish
Number of pages25
JournalJournal of High Energy Physics
Issue number6
DOIs
Publication statusPublished - 2003
Externally publishedYes

Fingerprint

Dive into the research topics of 'Casimir effect on the worldline'. Together they form a unique fingerprint.

Cite this