TY - JOUR
T1 - CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth
AU - Chapman, Kelly
AU - Taleski, Michael
AU - Ogilvie, Huw A.
AU - Imin, Nijat
AU - Djordjevic, Michael A.
PY - 2019
Y1 - 2019
N2 - Lateral root (LR) proliferation is a major determinant of soil nutrient uptake. How resource allocation controls the extent of LR growth remains unresolved. We used genetic, physiological, transcriptomic, and grafting approaches to define a role for C-TERMINALLY ENCODED PEPTIDE RECEPTOR 1 (CEPR1) in controlling sucrose-dependent LR growth. CEPR1 inhibited LR growth in response to applied sucrose, other metabolizable sugars, and elevated light intensity. Pathways through CEPR1 restricted LR growth by reducing LR meristem size and the length of mature LR cells. RNA-sequencing of wild-type (WT) and cepr1-1 roots with or without sucrose treatment revealed an intersection of CEP–CEPR1 signalling with the sucrose transcriptional response. Sucrose up-regulated several CEP genes, supporting a specific role for CEP–CEPR1 in the response to sucrose. Moreover, genes with basally perturbed expression in cepr1-1 overlap with WT sucrose-responsive genes significantly. We found that exogenous CEP inhibited LR growth via CEPR1 by reducing LR meristem size and mature cell length. This result is consistent with CEP–CEPR1 acting to curtail the extent of sucrose-dependent LR growth. Reciprocal grafting indicates that LR growth inhibition requires CEPR1 in both the roots and shoots. Our results reveal a new role for CEP–CEPR1 signalling in controlling LR growth in response to sucrose.
AB - Lateral root (LR) proliferation is a major determinant of soil nutrient uptake. How resource allocation controls the extent of LR growth remains unresolved. We used genetic, physiological, transcriptomic, and grafting approaches to define a role for C-TERMINALLY ENCODED PEPTIDE RECEPTOR 1 (CEPR1) in controlling sucrose-dependent LR growth. CEPR1 inhibited LR growth in response to applied sucrose, other metabolizable sugars, and elevated light intensity. Pathways through CEPR1 restricted LR growth by reducing LR meristem size and the length of mature LR cells. RNA-sequencing of wild-type (WT) and cepr1-1 roots with or without sucrose treatment revealed an intersection of CEP–CEPR1 signalling with the sucrose transcriptional response. Sucrose up-regulated several CEP genes, supporting a specific role for CEP–CEPR1 in the response to sucrose. Moreover, genes with basally perturbed expression in cepr1-1 overlap with WT sucrose-responsive genes significantly. We found that exogenous CEP inhibited LR growth via CEPR1 by reducing LR meristem size and mature cell length. This result is consistent with CEP–CEPR1 acting to curtail the extent of sucrose-dependent LR growth. Reciprocal grafting indicates that LR growth inhibition requires CEPR1 in both the roots and shoots. Our results reveal a new role for CEP–CEPR1 signalling in controlling LR growth in response to sucrose.
UR - https://hdl.handle.net/1959.7/uws:61753
U2 - 10.1093/jxb/erz207
DO - 10.1093/jxb/erz207
M3 - Article
SN - 0022-0957
VL - 70
SP - 3955
EP - 3967
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
IS - 15
ER -