CEP3 levels affect starvation-related growth responses of the primary root

Christina Delay, Kelly Chapman, Michael Taleski, Yaowei Wang, Sonika Tyagi, Yan Xiong, Nijat Imin, Michael A. Djordjevic

Research output: Contribution to journalArticlepeer-review

Abstract

CEPs (C-TERMINALLY ENCODED PEPTIDEs) inhibit Arabidopsis primary root growth by unknown mechanisms. We investigated how CEP3 levels control primary root growth. CEP3 peptide application decreased cell division, S-phase cell number, root meristematic cell number, and meristem zone (MZ) size in a dose- and CEP RECEPTOR1-dependent manner. Grafting showed that CEP3-dependent growth inhibition requires root and shoot CEPR1. CEP3 induced mitotic quiescence in MZ cells significantly faster than that induced by nutrient limitation alone. CEP3 also inhibited the restoration of S-phase to mitotically quiescence cells by nutrient resupply without quantitatively reducing TARGET OF RAPAMYCIN (TOR) kinase activity. In contrast, cep3-1 had an increased meristem size and S-phase cell number under nitrogen (N)-limited conditions, but not under N-sufficient conditions. Furthermore, cep3-1 meristematic cells remained in S-phase longer than wild-type cells during a sustained carbon (C) and N limitation. RNA sequencing showed that CEP3 peptide down-regulated genes involved in S-phase entry, cell wall and ribosome biogenesis, DNA replication, and meristem expansion, and up-regulated genes involved in catabolic processes and proteins and peptides that negatively control meristem expansion and root growth. Many of these genes were reciprocally regulated in cep3-1. The results suggest that raising CEP3 induces starvation-related responses that curtail primary root growth under severe nutrient limitation.
Original languageEnglish
Pages (from-to)4763-4774
Number of pages11
JournalJournal of Experimental Botany
Volume70
Issue number18
DOIs
Publication statusPublished - 2019

Open Access - Access Right Statement

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]

Fingerprint

Dive into the research topics of 'CEP3 levels affect starvation-related growth responses of the primary root'. Together they form a unique fingerprint.

Cite this