TY - JOUR
T1 - Chemical composition and antioxidant and anticandidal activities of essential oils from different wild Moroccan Thymus species
AU - Jamali, Chaima Alaoui
AU - El Bouzidi, Laila
AU - Bekkouche, Khalid
AU - Lahcen, Hassani
AU - Markouk, Mohammed
AU - Wohlmuth, Hans
AU - Leach, David
AU - Abbad, Abdelaziz
PY - 2012
Y1 - 2012
N2 - Samples of the aerial parts of Thymus broussonetii, T. ciliatus, T. leptobotrys, T. maroccanus, T. pallidus, T. satureioides, and T. serpyllum collected from different natural regions in southern and southwestern Morocco were analyzed for their qualitative and quantitative essential oil profiles. In total, 46 compounds, representing more than 99% of the oils, were characterized. Monoterpenes, both hydrocarbons (12.9-58.0%) and oxygenated monoterpenes (38.8-81.1%), were the principal classes of compounds for most of the thyme species studied. Cluster analysis allowed the classification of the species into three main groups: a carvacrol group (Group I), comprising the species T. maroccanus and T. leptobotrys, a linalyl acetate and (E)-nerolidol group (Group II), represented by T. serpyllum, and a thymol and/or carvacrol, γ-terpinene, and p-cymene group (Group III), composed of T. satureioides, T. broussonetii, T. ciliatus, and T. pallidus. The essential oils were screened for their antioxidant and anticandidal activities. The data showed that the oils obtained from T. leptobotrys and T. maroccanus (carvacrol group) possessed the highest antioxidant activities as assessed by the determination of the DPPH free radical-scavenging ability and the ferric-reducing potential. The anticandidal assays indicated that the highest activity was noticed for the essential oil isolated from T. leptobotrys.
AB - Samples of the aerial parts of Thymus broussonetii, T. ciliatus, T. leptobotrys, T. maroccanus, T. pallidus, T. satureioides, and T. serpyllum collected from different natural regions in southern and southwestern Morocco were analyzed for their qualitative and quantitative essential oil profiles. In total, 46 compounds, representing more than 99% of the oils, were characterized. Monoterpenes, both hydrocarbons (12.9-58.0%) and oxygenated monoterpenes (38.8-81.1%), were the principal classes of compounds for most of the thyme species studied. Cluster analysis allowed the classification of the species into three main groups: a carvacrol group (Group I), comprising the species T. maroccanus and T. leptobotrys, a linalyl acetate and (E)-nerolidol group (Group II), represented by T. serpyllum, and a thymol and/or carvacrol, γ-terpinene, and p-cymene group (Group III), composed of T. satureioides, T. broussonetii, T. ciliatus, and T. pallidus. The essential oils were screened for their antioxidant and anticandidal activities. The data showed that the oils obtained from T. leptobotrys and T. maroccanus (carvacrol group) possessed the highest antioxidant activities as assessed by the determination of the DPPH free radical-scavenging ability and the ferric-reducing potential. The anticandidal assays indicated that the highest activity was noticed for the essential oil isolated from T. leptobotrys.
KW - Morocco
KW - Thymes
KW - Thymus plant
KW - antioxidants
KW - candida
KW - essences and essential oils
UR - http://handle.uws.edu.au:8081/1959.7/uws:31612
U2 - 10.1002/cbdv.201200041
DO - 10.1002/cbdv.201200041
M3 - Article
SN - 1612-1872
VL - 9
SP - 1188
EP - 1197
JO - Chemistry and Biodiversity
JF - Chemistry and Biodiversity
IS - 6
ER -