Climate effects on belowground tea litter decomposition depend on ecosystem and organic matter types in global wetlands

Stacey M. Trevathan-Tackett, Sebastian Kepfer-Rojas, Martino Malerba, Peter I. Macreadie, Ika Djukic, Junbin Zhao, Erica B. Young, Paul H. York, Shin Cheng Yeh, Yanmei Xiong, Gidon Winters, Eilat Campus, Danielle Whitlock, Carolyn A. Weaver, Anne Watson, Inger Visby, Jacek Tylkowski, Allison Trethowan, Scott Tiegs, Ben TaylorJozef Szpikowski, Grazyna Szpikowska, Victoria L. Strickland, Normunds Stivrins, Ana I. Sousa, Sutinee Sinutok, Whitney A. Scheffel, Rui Santos, Jonathan Sanderman, Salvador Sánchez-Carrillo, Joan Albert Sanchez-Cabeza, Krzysztof G. Rymer, Ana Carolina Ruiz-Fernandez, Bjorn J.M. Robroek, Tessa Roberts, Aurora M. Ricart, Laura K. Reynolds, Grzegorz Rachlewicz, Anchana Prathep, Andrew J. Pinsonneault, Elise Pendall, Richard Payne, Ilze Ozola, Cody Onufrock, Anne Ola, Steven F. Oberbauer, Aroloye O. Numbere, Alyssa B. Novak, Joanna Norkko, Alf Norkko, Thomas J. Mozdzer, Pam Morgan, Diana I. Montemayor, Charles W. Martin, Sparkle L. Malone, Maciej Major, Mikolaj Majewski, Carolyn J. Lundquist, Catherine E. Lovelock, Songlin Liu, Hsing Juh Lin, Ana Lillebo, Jinquan Li, John S. Kominoski, Anzar Ahmad Khuroo, Jeffrey J. Kelleway, Kristin I. Jinks, Daniel Jerónimo, Christopher Janousek, Emma L. Jackson, Oscar Iribarne, Torrance Hanley, Maroof Hamid, Arjun Gupta, Rafael D. Guariento, Ieva Grudzinska, Anderson da Rocha Gripp, María A. González Sagrario, Laura M. Garrison, Karine Gagnon, Esperança Gacia, Marco Fusi, Lachlan Farrington, Jenny Farmer, Francisco de Assis Esteves, Mauricio Escapa, Monika Domańska, André T.C. Dias, Carmen B. de los Santos, Daniele Daffonchio, Pawel M. Czyryca, Rod M. Connolly, Alexander Cobb, Maria Chudzińska, Bart Christiaen, Peter Chifflard, Sara Castelar, Luciana S. Carneiro, José Gilberto Cardoso-Mohedano, Megan Camden, Adriano Caliman, Richard H. Bulmer, Jennifer Bowen, Christoffer Boström, Susana Bernal, John A. Berges, Juan C. Benavides, Savanna C. Barry, Juha M. Alatalo, Alia N. Al-Haj, Maria Fernanda Adame

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
2 Downloads (Pure)

Abstract

Patchy global data on belowground litter decomposition dynamics limit our capacity to discern the drivers of carbon preservation and storage across inland and coastal wetlands. We performed a global, multiyear study in over 180 wetlands across 28 countries and 8 macroclimates using standardized litter as measures of "recalcitrant"(rooibos tea) and "labile"(green tea) organic matter (OM) decomposition. Freshwater wetlands and tidal marshes had the highest tea mass remaining, indicating a greater potential for carbon preservation in these ecosystems. Recalcitrant OM decomposition increased with elevated temperatures throughout the decay period, e.g., increase from 10 to 20°C corresponded to a 1.46-fold increase in the recalcitrant OM decay rate constant. The effect of elevated temperature on labile OM breakdown was ecosystem-dependent, with tidally influenced wetlands showing limited effects of temperature compared with freshwater wetlands. Based on climatic projections, by 2050 wetland decay constants will increase by 1.8% for labile and 3.1% for recalcitrant OM. Our study highlights the potential for reduction in belowground OM in coastal and inland wetlands under increased warming, but the extent and direction of this effect at a large scale is dependent on ecosystem and OM characteristics. Understanding local versus global drivers is necessary to resolve ecosystem influences on carbon preservation in wetlands.
Original languageEnglish
Pages (from-to)21589-21603
Number of pages15
JournalEnvironmental Science and Technology
Volume58
Issue number49
DOIs
Publication statusPublished - Dec 2024

Keywords

  • blue carbon
  • macroclimate
  • tea bags
  • TeaComposition HO
  • teal carbon

Fingerprint

Dive into the research topics of 'Climate effects on belowground tea litter decomposition depend on ecosystem and organic matter types in global wetlands'. Together they form a unique fingerprint.

Cite this