TY - JOUR
T1 - Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems
AU - Zhang, Liyan
AU - Delgado-Baquerizo, Manuel
AU - Shi, Yu
AU - Liu, Xu
AU - Yang, Yunfeng
AU - Chu, Haiyan
PY - 2021
Y1 - 2021
N2 - Glacier-fed aquatic ecosystems provide habitats for diverse and active bacterial communities. However, the environmental vulnerabilities of co-existing water and sediment bacterial communities in these ecosystems remain unclear. Here, 16S rRNA gene sequencing was used to investigate co-existing bacterial communities in paired water and sediment samples from multiple rivers and lakes that are mainly fed by glaciers from the southeast Tibetan Plateau. Overall, the bacterial communities were dissimilar between the water and sediment, which indicated that there were limited interactions between them. Bacterial diversity was greatest in the sediments, where it was mainly driven by changes in nitrogen compounds and pH. Meanwhile water bacterial diversity was more susceptible to evapotranspiration, elevation, and mean annual temperature. Water samples contained higher proportions of Proteobacteria and Bacteroidetes, while sediment harbored higher proportions of Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Cyanobacteria, and Gemmatimonadetes. Bacterial community composition was significantly correlated with mean annual precipitation in water, but with nitrogen compounds in sediment. The co-occurrence network of water included more keystone species (e.g., CL500–29 marine group, Nocardioides spp., and Bacillus spp.) than the sediment network. These keystone species showed stronger phylogenetic signals than the species in the modular structures. Further, ecological clusters within the networks suggested that there were contrasting environmental vulnerabilities and preferences between water and sediment communities. These findings demonstrated that co-existing water and sediment bacterial communities and ecological clusters were shaped by contrasting environmental factors. This work provides a basis for understanding the importance of bacterial communities in maintaining glacier-fed aquatic ecosystems. Further, the results provide new perspectives for water resource management and water conservation in changing environments.
AB - Glacier-fed aquatic ecosystems provide habitats for diverse and active bacterial communities. However, the environmental vulnerabilities of co-existing water and sediment bacterial communities in these ecosystems remain unclear. Here, 16S rRNA gene sequencing was used to investigate co-existing bacterial communities in paired water and sediment samples from multiple rivers and lakes that are mainly fed by glaciers from the southeast Tibetan Plateau. Overall, the bacterial communities were dissimilar between the water and sediment, which indicated that there were limited interactions between them. Bacterial diversity was greatest in the sediments, where it was mainly driven by changes in nitrogen compounds and pH. Meanwhile water bacterial diversity was more susceptible to evapotranspiration, elevation, and mean annual temperature. Water samples contained higher proportions of Proteobacteria and Bacteroidetes, while sediment harbored higher proportions of Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Cyanobacteria, and Gemmatimonadetes. Bacterial community composition was significantly correlated with mean annual precipitation in water, but with nitrogen compounds in sediment. The co-occurrence network of water included more keystone species (e.g., CL500–29 marine group, Nocardioides spp., and Bacillus spp.) than the sediment network. These keystone species showed stronger phylogenetic signals than the species in the modular structures. Further, ecological clusters within the networks suggested that there were contrasting environmental vulnerabilities and preferences between water and sediment communities. These findings demonstrated that co-existing water and sediment bacterial communities and ecological clusters were shaped by contrasting environmental factors. This work provides a basis for understanding the importance of bacterial communities in maintaining glacier-fed aquatic ecosystems. Further, the results provide new perspectives for water resource management and water conservation in changing environments.
UR - https://hdl.handle.net/1959.7/uws:64445
U2 - 10.1016/j.watres.2021.117139
DO - 10.1016/j.watres.2021.117139
M3 - Article
SN - 0043-1354
VL - 198
JO - Water Research
JF - Water Research
M1 - 117139
ER -