Abstract
Purpose: Root exudation of organic acids (OAs) facilitates plant P uptake from soil, playing a key role in rhizosphere nutrient availability. However, OA exudation responses to CO2 concentrations and water availability remain largely untested. Methods: We examined the effects of CO2 and water on OA exudates in three Australian woodland species: Eucalyptus tereticornis, Hakea sericea and Microlaena stipoides. Seedlings were grown in a glasshouse in low P soil, exposed to CO2 (400 ppm [aCO2] or 540 ppm [eCO2]) and water treatments (100% water holding capacity [high-watered] or 25-50% water holding capacity [low-watered]). After six weeks, we collected OAs from rhizosphere soil (OArhizo) and trap solutions in which washed roots were immersed (OAexuded). Results: For E. tereticornis, the treatments changed OArhizo composition, driven by increased malic acid in plants exposed to eCO2 and increased oxalic acid in low-watered plants. For H. sericea, low-watered plants had higher OAexuded per plant (+ 116%) and lower OArhizo per unit root mass (-77%) associated with larger root mass but fewer cluster roots. For M. stipoides, eCO2 increased OAexuded per plant (+ 107%) and per unit root mass (+ 160%), while low-watered plants had higher citric and lower malic acids for OArhizo and OAexuded: changes in OA amounts and composition driven by malic acid were positively associated with soil P availability under eCO2. Conclusion: We conclude that eCO2 and altered water availability shifted OAs in root exudates, modifying plant-soil interactions and the associated carbon and nutrient economy.
Original language | English |
---|---|
Pages (from-to) | 507-524 |
Number of pages | 18 |
Journal | Plant and Soil |
Volume | 485 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - Apr 2023 |
Bibliographical note
Publisher Copyright:© 2023, The Author(s).
Open Access - Access Right Statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Keywords
- Carboxylates
- Cluster roots
- Exudation
- Hakea sericea
- Microlaena stipoides
- Phosphorus