TY - JOUR
T1 - Coal tailings as a soil conditioner : evaluation of tailing properties and effect on tomato plants
AU - Yong, Miing-Tiem
AU - Babla, Mohammad
AU - Karan, Shawan
AU - Katwal, Utsab
AU - Jahandari, Soheil
AU - Matta, Pushpinder
AU - Chen, Zhong-Hua
AU - Tao, Zhong
PY - 2022
Y1 - 2022
N2 - The global coal industry yields a vast amount of tailings waste, and the utilisation of these tailings necessitates innovative eforts contributing to the United Nations Sustainable Development Goals. One of such novel initiatives is to reuse coal tailings (CT) safely, ecofriendly, and cost-efectively in agroecosystems as a soil conditioner to enhance the productivity of lands. This study aimed to evaluate the potential utilisation of coal tailings waste in the soil amelioration to improve plant performance. The physico–chemical characteristics of coal tailings from two Australian mining sites (CT1 and CT2) showed that the tailings samples are alkaline with loamy and loamy sand textures, respectively. The tailings have ~ 3% of macronutrients, high carbon (C), and low heavy metals and metalloids (As, Cd, Se, Cu, Zn, and Pb). The germination rate of tomato seeds was improved in the low-rate CT treatment. Greenhouse tomato plants exhibited an increase in leaf’s K, Ca, and Mg contents in CT1 and CT2 treatments. More importantly, the CT treatment-induced accumulation of heavy metals in plants was mostly insignifcant in both CT treatments. Therefore, we highlight the potential application of coal tailings as a soil conditioner because of the benefcial efect of improved carbon and nutrients (N, P, K, Mg, and Ca) in tomato leaves. Further amendment of the coal tailings should focus on the adjustment of pH and the addition of other benefcial materials for the improvement of soil properties for crops in both the greenhouse and the feld.
AB - The global coal industry yields a vast amount of tailings waste, and the utilisation of these tailings necessitates innovative eforts contributing to the United Nations Sustainable Development Goals. One of such novel initiatives is to reuse coal tailings (CT) safely, ecofriendly, and cost-efectively in agroecosystems as a soil conditioner to enhance the productivity of lands. This study aimed to evaluate the potential utilisation of coal tailings waste in the soil amelioration to improve plant performance. The physico–chemical characteristics of coal tailings from two Australian mining sites (CT1 and CT2) showed that the tailings samples are alkaline with loamy and loamy sand textures, respectively. The tailings have ~ 3% of macronutrients, high carbon (C), and low heavy metals and metalloids (As, Cd, Se, Cu, Zn, and Pb). The germination rate of tomato seeds was improved in the low-rate CT treatment. Greenhouse tomato plants exhibited an increase in leaf’s K, Ca, and Mg contents in CT1 and CT2 treatments. More importantly, the CT treatment-induced accumulation of heavy metals in plants was mostly insignifcant in both CT treatments. Therefore, we highlight the potential application of coal tailings as a soil conditioner because of the benefcial efect of improved carbon and nutrients (N, P, K, Mg, and Ca) in tomato leaves. Further amendment of the coal tailings should focus on the adjustment of pH and the addition of other benefcial materials for the improvement of soil properties for crops in both the greenhouse and the feld.
UR - https://hdl.handle.net/1959.7/uws:67920
U2 - 10.1007/s10725-022-00870-5
DO - 10.1007/s10725-022-00870-5
M3 - Article
SN - 0167-6903
VL - 98
SP - 439
EP - 450
JO - Plant Growth Regulation
JF - Plant Growth Regulation
IS - 3
ER -