TY - JOUR
T1 - Computer-guided discovery of a pH-responsive organic photocatalyst and application for pH and light dual-gated polymerization
AU - Wu, Chenyu
AU - Chen, Hengqi
AU - Corrigan, Nathaniel
AU - Jung, Kenward
AU - Kan, Xiaonan
AU - Li, Zhibo
AU - Liu, Wenjian
AU - Xu, Jiangtao
AU - Boyer, Cyrille
PY - 2019/5
Y1 - 2019/5
N2 - In this work, we adopted a fully computer-guided strategy in discovering an efficient pH-switchable organic photocatalyst (OPC), unprecedentedly turning colorless at pH 5 and recovering strong visiblelight absorption and photoactivity at pH 7. This is the first example of an OPC design fully guided by comprehensive density functional theory (DFT) studies covering electrostatic, electrochemical, and photophysical predictions. Characterization of the designed OPC after synthesis confirmed the computational predictions. We applied this OPC to mediate an aqueous photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under green LED light (nominal emission wavelength: 530 nm, 5 mW/cm2). We demonstrated that the polymerization can be reversibly ceased by a slight change of pH (pH ≤ 5.0) or in the absence of light. Furthermore, we demonstrated that the polymerization rate could be significantly retarded by bubbling carbon dioxide into the reaction solution under visible light. Conversely, the rate could be fully recovered via exposure to nitrogen gas. This is the first example of a pH and light dual-gated polymerization system with complete and reversible inhibition.
AB - In this work, we adopted a fully computer-guided strategy in discovering an efficient pH-switchable organic photocatalyst (OPC), unprecedentedly turning colorless at pH 5 and recovering strong visiblelight absorption and photoactivity at pH 7. This is the first example of an OPC design fully guided by comprehensive density functional theory (DFT) studies covering electrostatic, electrochemical, and photophysical predictions. Characterization of the designed OPC after synthesis confirmed the computational predictions. We applied this OPC to mediate an aqueous photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under green LED light (nominal emission wavelength: 530 nm, 5 mW/cm2). We demonstrated that the polymerization can be reversibly ceased by a slight change of pH (pH ≤ 5.0) or in the absence of light. Furthermore, we demonstrated that the polymerization rate could be significantly retarded by bubbling carbon dioxide into the reaction solution under visible light. Conversely, the rate could be fully recovered via exposure to nitrogen gas. This is the first example of a pH and light dual-gated polymerization system with complete and reversible inhibition.
UR - http://www.scopus.com/inward/record.url?scp=85066158329&partnerID=8YFLogxK
UR - https://go.openathens.net/redirector/westernsydney.edu.au?url=https://doi.org/10.1021/jacs.9b01096
U2 - 10.1021/jacs.9b01096
DO - 10.1021/jacs.9b01096
M3 - Article
C2 - 31016978
AN - SCOPUS:85066158329
SN - 0002-7863
VL - 141
SP - 8207
EP - 8220
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 20
ER -