TY - JOUR
T1 - Constituents leached by tomato seeds regulate the behavior of root-knot nematodes and their antifungal effects against seed-borne fungi
AU - Kuang, Ming-shan
AU - Liu, Ting-ting
AU - Wu, Hai-bin
AU - Lan, Hui-peng
AU - Wen, Yu-xin
AU - Wu, Hai-bo
AU - Li, Xi-meng
PY - 2020
Y1 - 2020
N2 - Germinating seeds can release diverse phytochemicals that repel, inhibit, or kill pathogens such as root-knot nematodes and seed-borne fungi. However, little is known about the composition of these phytochemicals and their effects on pathogens. In this study, we demonstrated that tomato seed exudates can attract the nematode Meloidogyne incognita using a dual-choice assay. Eighteen compounds were then isolated and identified from the exudates. Of these, esters (1-3), fatty acids (4-6), and phenolic acids (10-12) were proven to be the signaling molecules that facilitated the host-seeking process of second-stage juveniles (J2s) of nematodes, while alkaloids (17 and 18) disrupted J2s in locating their host. Furthermore, some phenolic acids and alkaloids showed antifungal effects against seed-borne fungi. In particular, ferulic acid (12) showed obvious activity against Aspergillus flavus (minimum inhibitory concentration (MIC), 32 μg/mL), while dihydrocapsaicin (17) showed noticeable activity against Fusarium oxysporum (MIC, 16 μg/mL). Overall, this study presents the first evidence that M. incognita can be attracted to or deterred by various compounds in seed exudates through identification of the structures of the compounds in the exudates and analysis of their effects on nematodes. Furthermore, some antifungal compounds were also found. The findings of this work suggest that seed exudates are new source for finding insights into the development of plant protective substances with nematocidal and antifungal effects.
AB - Germinating seeds can release diverse phytochemicals that repel, inhibit, or kill pathogens such as root-knot nematodes and seed-borne fungi. However, little is known about the composition of these phytochemicals and their effects on pathogens. In this study, we demonstrated that tomato seed exudates can attract the nematode Meloidogyne incognita using a dual-choice assay. Eighteen compounds were then isolated and identified from the exudates. Of these, esters (1-3), fatty acids (4-6), and phenolic acids (10-12) were proven to be the signaling molecules that facilitated the host-seeking process of second-stage juveniles (J2s) of nematodes, while alkaloids (17 and 18) disrupted J2s in locating their host. Furthermore, some phenolic acids and alkaloids showed antifungal effects against seed-borne fungi. In particular, ferulic acid (12) showed obvious activity against Aspergillus flavus (minimum inhibitory concentration (MIC), 32 μg/mL), while dihydrocapsaicin (17) showed noticeable activity against Fusarium oxysporum (MIC, 16 μg/mL). Overall, this study presents the first evidence that M. incognita can be attracted to or deterred by various compounds in seed exudates through identification of the structures of the compounds in the exudates and analysis of their effects on nematodes. Furthermore, some antifungal compounds were also found. The findings of this work suggest that seed exudates are new source for finding insights into the development of plant protective substances with nematocidal and antifungal effects.
UR - https://hdl.handle.net/1959.7/uws:60125
U2 - 10.1021/acs.jafc.0c01797
DO - 10.1021/acs.jafc.0c01797
M3 - Article
SN - 0021-8561
VL - 68
SP - 9061
EP - 9069
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 34
ER -