Abstract
Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair) or ambient Tair + 3°C (i.e. 'warmed'). We measured light- and CO2-saturated net photosynthesis (Amax) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total non-structural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source-sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming.
Original language | English |
---|---|
Pages (from-to) | 354-367 |
Number of pages | 14 |
Journal | New Phytologist |
Volume | 212 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- Eucalyptus tereticornis
- carbohydrates
- climatic changes
- photosynthesis
- acclimation