TY - JOUR
T1 - Coomassie blue staining for high sensitivity gel-based proteomics
AU - Gauci, Victoria J.
AU - Padula, Matthew P.
AU - Coorssen, Jens R.
PY - 2013
Y1 - 2013
N2 - Gel electrophoresis, particularly one- (1DE) and two-dimensional electrophoresis (2DE), remain among the most widely used top-down methods for resolving and analysing proteomes. Detection of the resulting protein maps relies on staining (i.e. colloidal coomassie blue (CCB) or SYPRO Ruby (SR), in addition to many others). Fluorescent in-gel protein stains are generally preferred for higher sensitivity, reduced background, and wider dynamic range. Although traditionally used for densitometry, CBB has fluorescent properties. Indeed, infrared detection of CCB stained protein was comparable to SR, with BioSafe (Bio-Rad) and the Neuhoff formulation (NCCB) identified as potentially superior to SR; a minor sensitivity issue encountered in gel-resolved proteomes; might have been due to the unified staining protocol used. Here the staining protocol for both CCB formulations was optimised, yielding improved selectivity without affecting sensitivity; the resulting linear dynamic range was similar for BioSafe and NCCB and somewhat better than SR. 2D gel-based analyses of mouse brain and Arabidopsis thaliana (leaf) proteomes indicated markedly superior spot detection using the NCCB formulation. Thus more sensitive, quantitative in-gel protein analyses can be achieved using NCCB, at a fraction of the cost. This article is part of a Special Issue entitled: From Genome to Proteome: Open Innovations.
AB - Gel electrophoresis, particularly one- (1DE) and two-dimensional electrophoresis (2DE), remain among the most widely used top-down methods for resolving and analysing proteomes. Detection of the resulting protein maps relies on staining (i.e. colloidal coomassie blue (CCB) or SYPRO Ruby (SR), in addition to many others). Fluorescent in-gel protein stains are generally preferred for higher sensitivity, reduced background, and wider dynamic range. Although traditionally used for densitometry, CBB has fluorescent properties. Indeed, infrared detection of CCB stained protein was comparable to SR, with BioSafe (Bio-Rad) and the Neuhoff formulation (NCCB) identified as potentially superior to SR; a minor sensitivity issue encountered in gel-resolved proteomes; might have been due to the unified staining protocol used. Here the staining protocol for both CCB formulations was optimised, yielding improved selectivity without affecting sensitivity; the resulting linear dynamic range was similar for BioSafe and NCCB and somewhat better than SR. 2D gel-based analyses of mouse brain and Arabidopsis thaliana (leaf) proteomes indicated markedly superior spot detection using the NCCB formulation. Thus more sensitive, quantitative in-gel protein analyses can be achieved using NCCB, at a fraction of the cost. This article is part of a Special Issue entitled: From Genome to Proteome: Open Innovations.
UR - http://handle.uws.edu.au:8081/1959.7/533764
U2 - 10.1016/j.jprot.2013.01.027
DO - 10.1016/j.jprot.2013.01.027
M3 - Article
SN - 1874-3919
VL - 90
SP - 96
EP - 106
JO - Journal of Proteomics
JF - Journal of Proteomics
ER -