TY - JOUR
T1 - Correlation between acidity and catalytic performance of mesoporous zirconium oxophosphate in phenylglyoxal conversion
AU - Xu, Haimei
AU - Wang, Zichun
AU - Miao, Zhichao
AU - Zhu, Yuxiang
AU - Marianov, Aleksei
AU - Wang, Lizhuo
AU - Castignolles, Patrice
AU - Gaborieau, Marianne
AU - Huang, Jun
AU - Jiang, Yijiao
PY - 2019
Y1 - 2019
N2 - The one-step conversion of α-keto aldehydes to α-hydroxy carboxylic acids and their derivatives using solid acids is of great appeal in biomass utilization. In this work, ordered mesoporous zirconium oxophosphate (ZrPO) catalysts with tunable acidity were prepared and their catalytic performance was evaluated using phenylglyoxal (PG) conversion to ethyl mandelate (EM). The roles of Lewis acid sites (LAS) and Brønsted acid sites (BAS) of ZrPO were investigated by kinetic studies of PG conversion combined with temperature-programmed desorption of ammonia (NH 3 -TPD) and solid-state NMR characterizations. It is found that the ratio of LAS to BAS on the ZrPO plays a dominant role in this reaction. ZrPO-0.75-500, with a LAS/BAS ratio of 2.1, was found to be the best catalyst. The reaction pathways, i.e., the direct isomerization of PG to EM by LAS and via the formation of an intermediate hemiacetal by BAS, are therefore proposed. Moreover, the effect of water on the catalytic activity was studied. A moderate amount of water induced either by catalyst pretreatment at the proper temperature or deliberately dosed on the ZrPO materials achieves a maximum catalytic activity. The highest catalytic activity, i.e., 82% of PG conversion and 92% of EM selectivity, was obtained on ZrPO-0.75-500 that was dosed by 15 μmol water per 50 mg of the catalyst. It is concluded that ZrPO with a suitable combination of LAS and BAS is required to efficiently and selectively catalyze the conversion of α-keto aldehydes to α-hydroxy carboxylic acid derivatives. It is feasible, from a practical point of view, to tune the density of LAS and BAS on the catalysts to achieve a better catalytic performance.
AB - The one-step conversion of α-keto aldehydes to α-hydroxy carboxylic acids and their derivatives using solid acids is of great appeal in biomass utilization. In this work, ordered mesoporous zirconium oxophosphate (ZrPO) catalysts with tunable acidity were prepared and their catalytic performance was evaluated using phenylglyoxal (PG) conversion to ethyl mandelate (EM). The roles of Lewis acid sites (LAS) and Brønsted acid sites (BAS) of ZrPO were investigated by kinetic studies of PG conversion combined with temperature-programmed desorption of ammonia (NH 3 -TPD) and solid-state NMR characterizations. It is found that the ratio of LAS to BAS on the ZrPO plays a dominant role in this reaction. ZrPO-0.75-500, with a LAS/BAS ratio of 2.1, was found to be the best catalyst. The reaction pathways, i.e., the direct isomerization of PG to EM by LAS and via the formation of an intermediate hemiacetal by BAS, are therefore proposed. Moreover, the effect of water on the catalytic activity was studied. A moderate amount of water induced either by catalyst pretreatment at the proper temperature or deliberately dosed on the ZrPO materials achieves a maximum catalytic activity. The highest catalytic activity, i.e., 82% of PG conversion and 92% of EM selectivity, was obtained on ZrPO-0.75-500 that was dosed by 15 μmol water per 50 mg of the catalyst. It is concluded that ZrPO with a suitable combination of LAS and BAS is required to efficiently and selectively catalyze the conversion of α-keto aldehydes to α-hydroxy carboxylic acid derivatives. It is feasible, from a practical point of view, to tune the density of LAS and BAS on the catalysts to achieve a better catalytic performance.
KW - Lewis acids
KW - biomass
KW - nuclear magnetic resonance spectroscopy
KW - zirconium phosphate
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:51773
U2 - 10.1021/acssuschemeng.9b00989
DO - 10.1021/acssuschemeng.9b00989
M3 - Article
SN - 2168-0485
VL - 7
SP - 8931
EP - 8942
JO - ACS Sustainable Chemistry and Engineering
JF - ACS Sustainable Chemistry and Engineering
IS - 9
ER -