Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment

Anthony P. Walker, Martin G. De Kauwe, Belinda E. Medlyn, Sonke Zaehle, Colleen M. Iversen, Shinichi Asao, Bertrand Guenet, Anna Harper, Thomas Hickler, Bruce A. Hungate, Atuk K. Jain, Yiqi Luo, Xingjie Lu, Meng Lu, Kristina Luus, J. Patrick Megonigal, Ram Oren, Edmund Ryan, Shijie Shu, Alan TalhelmYing-Ping Wang, Jeffrey M. Warren, Christian Werner, Jianyang Xia, Bai Yang, Donald R. Zak, Richard J. Norby

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)

Abstract

Increasing atmospheric CO2 stimulates photosynthesis which can increase net primary production (NPP), but at longer timescales may not necessarily increase plant biomass. Here we analyse the four decade-long CO2 -enrichment experiments in woody ecosystems that measured total NPP and biomass. CO2 enrichment increased biomass increment by 1.05 ± 0.26 kg C m −2 over a full decade, a 29.1 ± 11.7% stimulation of biomass gain in these early-secondary-succession temperate ecosystems. This response is predictable by combining the CO2 response of NPP (0.16 ± 0.03 kg C m −2 y −1 ) and the CO2 -independent, linear slope between biomass increment and cumulative NPP (0.55 ± 0.17). An ensemble of terrestrial ecosystem models fail to predict both terms correctly. Allocation to wood was a driver of across-site, and across-model, response variability and together with CO2 -independence of biomass retention highlights the value of understanding drivers of wood allocation under ambient conditions to correctly interpret and predict CO2 responses.
Original languageEnglish
Article number454
Number of pages13
JournalNature Communications
Volume10
Issue number1
DOIs
Publication statusPublished - 2019

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

Keywords

  • atmospheric carbon dioxide
  • forest ecology
  • photosynthesis
  • plant biomass

Fingerprint

Dive into the research topics of 'Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment'. Together they form a unique fingerprint.

Cite this