Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2,6-disulfonate and Fe3O4 nanoparticles

Subed Chandra Dev Sharma, Qian Sun, Jiangwei Li, Yuwen Wang, Fidele Suanon, Jinyan Yang, Chang-Ping Yu

Research output: Contribution to journalArticlepeer-review

72 Citations (Scopus)

Abstract

In this study, the decolorization and degradation of methyl red (MR) by suspended and immobilized cells of Aeromonas jandaei strain SCS5 under anaerobic and aerobic conditions have been investigated. The complete decolorization of MR at a concentration of 100 mg L-1 by A. jandaei strain SCS5 was obtained within 6 h for both anaerobic and aerobic suspended cultures, where the decolorization rate was faster in acidic conditions than basic conditions. The decolorization efficiency under 6 h increased with increasing cell mass of inoculation and decreased with increasing initial dye concentrations. Immobilized cells of A. jandaei strain SCS5 could decolorize MR, and the decolorization rate was significantly enhanced by cells immobilized with mediators such as anthraquinone-2,6-disulphonate and magnetic Fe3O4 nanoparticles compared to immobilized cells only. Moreover, the immobilized bacterial beads with mediators retained high decolorization activity up to more than 10 repeating cycles. UV-visible spectra (200-800 nm) and gas chromatography-mass spectrometry analysis demonstrated that MR was degraded by A. jandaei strain SCS5 through reductive cleavage of azo bond. MR degradation products showed less phytotoxicity against Triticum aestivum and Phaseolus mungo compared to untreated MR. This study has demonstrated that A. jandaei strain SCS5 could be a promising microbiological agent for the removal of azo dyes from the environment.
Original languageEnglish
Pages (from-to)88-97
Number of pages10
JournalInternational Biodeterioration and Biodegradation
Volume112
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2,6-disulfonate and Fe3O4 nanoparticles'. Together they form a unique fingerprint.

Cite this