TY - JOUR
T1 - Deep-learning-based burned area mapping using the synergy of Sentinel-1&2 data
AU - Zhang, Qi
AU - Ge, Linlin
AU - Zhang, Ruiheng
AU - Metternicht, Graciela Isabel
AU - Du, Zheyuan
AU - Kuang, Jianming
AU - Xu, Min
PY - 2021
Y1 - 2021
N2 - Around 350 million hectares of land are affected by wildfires every year influencing the health of ecosystems and leaving a trail of destruction. Accurate information over burned areas (BA) is essential for governments and communities to prioritize recovery actions. Prior research over the past decades has established the potentials and limitations of space-borne earth observation for mapping BA over large geographic areas at various scales. The operational deployment of Sentinel-1 and Sentinel-2 constellations significantly improved the quality and quantity of the imagery from the microwave (C-band) and optical regions on the spectrum. Based on that, this study set to investigate whether the existing coarse BA products can be further improved by the synergy of optical surface reflectance (SR), radar backscatter coefficient (BS), and/or radar interferometric coherence (COR) data with higher spatial resolutions. A Siamese Self-Attention (SSA) classification strategy is proposed for the multi-sensor BA mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by test sites, feature sources, and classification strategies to appraise the improvements achieved by the proposed method.
AB - Around 350 million hectares of land are affected by wildfires every year influencing the health of ecosystems and leaving a trail of destruction. Accurate information over burned areas (BA) is essential for governments and communities to prioritize recovery actions. Prior research over the past decades has established the potentials and limitations of space-borne earth observation for mapping BA over large geographic areas at various scales. The operational deployment of Sentinel-1 and Sentinel-2 constellations significantly improved the quality and quantity of the imagery from the microwave (C-band) and optical regions on the spectrum. Based on that, this study set to investigate whether the existing coarse BA products can be further improved by the synergy of optical surface reflectance (SR), radar backscatter coefficient (BS), and/or radar interferometric coherence (COR) data with higher spatial resolutions. A Siamese Self-Attention (SSA) classification strategy is proposed for the multi-sensor BA mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by test sites, feature sources, and classification strategies to appraise the improvements achieved by the proposed method.
UR - https://hdl.handle.net/1959.7/uws:67606
U2 - 10.1016/j.rse.2021.112575
DO - 10.1016/j.rse.2021.112575
M3 - Article
SN - 0034-4257
VL - 264
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
M1 - 112575
ER -