Abstract
Design rainfall intensity–frequency–duration data are a basic input to many water-related development projects. To derive design rainfalls, one needs long period of recorded rainfall data. Although daily rainfall data are generally widely available, short-duration rainfall data are scarce. For many urban applications, design rainfalls for much shorter durations are needed, which cannot be obtained directly from daily read rainfall data. This paper presents a simple approach that can be adopted to derive design rainfalls of short durations using daily rainfall data and other physio-climatic characteristics using a novel ‘index frequency combined with parameter regression technique’. This uses L moments to reduce the impacts of sampling variability in the analysis. Furthermore, this adopts generalised least squares regression to account for the inter-station correlation of the rainfall data in the analysis. The proposed method is applied to a pilot data set consisting of 203 rainfall stations across Australia. An independent Monte Carlo cross-validation test shows that the proposed method is capable of generating consistent and accurate design rainfall estimates from 6-min to 12-h duration. The developed technique can be adapted to other countries where there is a scarcity of short-duration rainfall data, but daily rainfall data are abundant.
Original language | English |
---|---|
Pages (from-to) | 1391-1401 |
Number of pages | 11 |
Journal | Natural Hazards |
Volume | 74 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2014 |