TY - JOUR
T1 - Development and application of a method for quantifying factors affecting chloramine decay in service reservoirs
AU - Sathasivan, Arumugam
AU - KC, Bal Krishna
AU - Fisher, Ian
PY - 2010
Y1 - 2010
N2 - Service reservoirs play an important role in maintaining water quality in distribution systems. Several factors affect the reservoir water quality, including bulk water reactions, stratification, sediment accumulation and wall reactions. It is generally thought that biofilm and sediments can harbour microorganisms, especially in chloraminated reservoirs, but their impact on disinfectant loss on disinfectant loss has not been quantified. Hence, debate exists as to the extent of the problem. To quantify the impact, the reservoir acceleration factor (FRa) is defined. This factor represents the acceleration of chloramine decay arising from all causes, including changes in retention time, assuming that the reservoir is completely mixed. Such an approach quantifies the impact of factors, other than chemical reactions, in the bulk water. Data from three full-scale chloraminated service reservoirs in distribution systems of Sydney, Australia, were analysed to demonstrate the generality of the method. Results showed that in two large service reservoirs (404 × 103 m3 and 82 × 103 m3) there was minimal impact from biofilm/sediment. However, in a small reservoir (3 × 103 m3), the biofilm/sediment had significant impact. In both small and large reservoirs, the effect of stratification was significant.
AB - Service reservoirs play an important role in maintaining water quality in distribution systems. Several factors affect the reservoir water quality, including bulk water reactions, stratification, sediment accumulation and wall reactions. It is generally thought that biofilm and sediments can harbour microorganisms, especially in chloraminated reservoirs, but their impact on disinfectant loss on disinfectant loss has not been quantified. Hence, debate exists as to the extent of the problem. To quantify the impact, the reservoir acceleration factor (FRa) is defined. This factor represents the acceleration of chloramine decay arising from all causes, including changes in retention time, assuming that the reservoir is completely mixed. Such an approach quantifies the impact of factors, other than chemical reactions, in the bulk water. Data from three full-scale chloraminated service reservoirs in distribution systems of Sydney, Australia, were analysed to demonstrate the generality of the method. Results showed that in two large service reservoirs (404 × 103 m3 and 82 × 103 m3) there was minimal impact from biofilm/sediment. However, in a small reservoir (3 × 103 m3), the biofilm/sediment had significant impact. In both small and large reservoirs, the effect of stratification was significant.
UR - http://hdl.handle.net/1959.7/uws:25235
U2 - 10.1016/j.watres.2010.06.009
DO - 10.1016/j.watres.2010.06.009
M3 - Article
SN - 0043-1354
VL - 44
SP - 4463
EP - 4472
JO - Water Research
JF - Water Research
IS - 15
ER -