Development of a convolutional neural network based regional flood frequency analysis model for South-east Australia

Research output: Contribution to journalArticlepeer-review

Abstract

Flood is one of the worst natural disasters, which causes significant damage to economy and society. Flood risk assessment helps to reduce flood damage by managing flood risk in flood affected areas. For ungauged catchments, regional flood frequency analysis (RFFA) is generally used for design flood estimation. This study develops a Convolutional Neural Network (CNN) based RFFA technique using data from 201 catchments in south-east Australia. The CNN based RFFA technique is compared with multiple linear regression (MLR), support vector machine (SVM), and decision tree (DT) based RFFA models. Based on a split-sample validation using several statistical indices such as relative error, bias and root mean squared error, it is found that the CNN model performs best for annual exceedance probabilities (AEPs) in the range of 1 in 5 to 1 in 100, with median relative error values in the range of 29–44%. The DT model shows the best performance for 1 in 2 AEP, with a median relative error of 24%. The CNN model outperforms the currently recommended RFFA technique in Australian Rainfall and Runoff (ARR) guideline. The findings of this study will assist to upgrade RFFA techniques in ARR guideline in near future.
Original languageEnglish
Pages (from-to)11349-11376
Number of pages28
JournalNatural Hazards
Volume120
Issue number12
DOIs
Publication statusPublished - Sept 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com- mons licence, and indicate if changes were made. The images or other third party material in this article are included in the article�s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article�s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Keywords

  • Regional flood frequency analysis
  • Convolutional neural network
  • Support vector machine
  • Artificial intelligence
  • Decision tree

Fingerprint

Dive into the research topics of 'Development of a convolutional neural network based regional flood frequency analysis model for South-east Australia'. Together they form a unique fingerprint.

Cite this