Abstract
Intervertebral disc degeneration might be amenable to stem cell therapy, but the required cells are scarce. Here, we report the development of a protocol for directed in vitro differentiation of human pluripotent stem cells (hPSCs) into notochord-like and nucleus pulposus (NP)-like cells of the disc. The first step combines enhancement of ACTIVIN/NODAL and WNT and inhibition of BMP pathways. By day 5 of differentiation, hPSC-derived cells express notochordal cell characteristic genes. After activating the TGF-β pathway for an additional 15 days, qPCR, immunostaining, and transcriptome data show that a wide array of NP markers are expressed. Transcriptomically, the in vitro-derived cells become more like in vivo adolescent human NP cells, driven by a set of influential genes enriched with motifs bound by BRACHYURY and FOXA2, consistent with an NP cell-like identity. Transplantation of these NP-like cells attenuates fibrotic changes in a rat disc injury model of disc degeneration. Zhang et al. report notochord-like and nucleus pulposus (NP)-like cells can be derived from human pluripotent stem cells using a NOTO-eGFP reporter system and a compound-defined protocol. These derived NP-like cells share high similarities with adolescent human NP cells and attenuate injury-induced intervertebral disc degeneration after transplantation.
Original language | English |
---|---|
Pages (from-to) | 2791-2806.e5 |
Number of pages | 16 |
Journal | Cell Reports |
Volume | 30 |
Issue number | 8 |
DOIs | |
Publication status | Published - 25 Feb 2020 |
Bibliographical note
Publisher Copyright:© 2020 The Author(s)